Dynamic Massive Parallel Computation Model for Graph Problems

Isabelle Liu

School of Computer Science Carleton University, Ottawa, Canada <isabelleliu@cmail.carleton.ca>

Introduction

- What is Massive Parallel Computing and why MPC
 - Computations on massive amounts of data
 - Traditional models are inadequate
 - MPC model captures the needs of computation at a massive scale
 - A collection of machines
 - communicate through indirect communication channels
 - Computation proceeds in synchronous rounds
- Limitations of MPC
 - Assumes to work on static datasets
 - Use of large volumes of resources

Introduction

- Dynamic algorithm and its benefits
 - Maintain a solution to a given problem throughout a sequence of modifications to the input data
 - Efficiently adjust the maintained solution
 - Detect whether modifications are needed almost instantly
 - Polynomial, and often exponential, speed-up
- Objective
 - Implement a Dynamic MPC (DMPC) algorithm
 - Test on a graph problem, Maximal Independent Set

Related Work

- Classic MPC:
 - $(1 + \epsilon)$ -approximate matching: $\tilde{O}(\sqrt{\log \Delta})$
 - Connected components: $\tilde{O}(\log D)$
- DMPC:
 - Maximal matching: O(1)
 - Connected components: O(1)
- Maximal Independent Set
 - Classic MPC: $\tilde{O}(\log \log \Delta)$
 - Dynamic: $O(\log^2 \Delta \cdot \log^2 n)$

MPC Model

- A set of μ machines M₁, ..., M_μ
- Memory that fits up to S bits per machine
- Exchange messages in synchronous rounds
- Send and receive messages of total size up to S per machine per round
- Input, of size N, stored across the different machines in arbitrary way
- Output at most S bits per machine

- Dynamic graph algorithm
 - Incremental: allow edge insertions only
 - Decremental: deletions only
 - Fully-dynamic: intermixed sequence of both
- Factors that determine the complexity of the dynamic algorithm
 - Number of rounds
 - Number of active machines per round
 - Total amount of communication per round

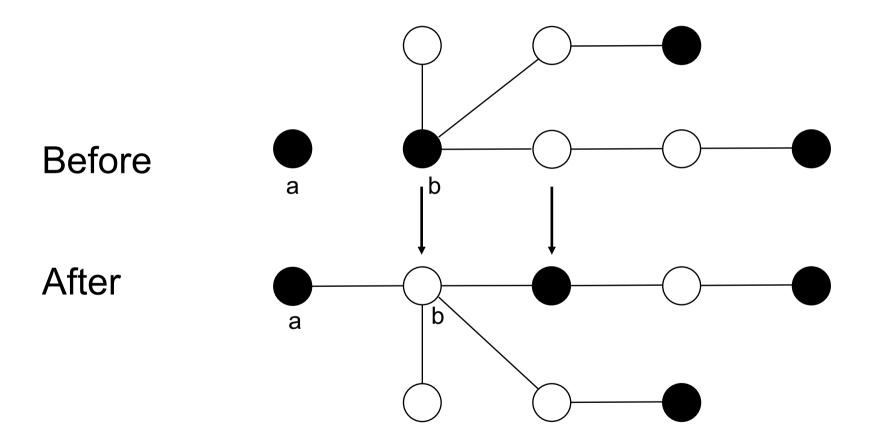
- Terminology of lexicographically first maximal independent set (LFMIS)
 - Graph G(V, E)
 - n = |V|, m = |E|
 - Ranking $\pi: V \to [0, 1]$
 - Add an alive vertex v to the MIS
 - Kill v and all of its alive neighbors
 - $LFMIS(G,\pi)$: subset of vertices that join the MIS
 - deg(v): degree of vertex v
 - count(v): number of neighbors of vertex v that are in the MIS
 - $N^+(v)$: set of neighbors of v in the MIS
 - $N^-(v)$: set of neighbors of v not in the MIS
 - Assign ID (1, ..., n) to each vertex based on its ranking π

- Preprocessing
 - Input size N; $O(\sqrt{N})$ memory per machine; $O(\sqrt{N})$ machines
 - N = m + n
 - $O(n/\sqrt{N})$ machines
 - Stored statistics about each vertex v
 - deg(v)
 - Whether in $LFMIS(G, \pi)$
 - count(v)
 - $N^+(v) \& N^-(v)$
 - Machine storing its neighbors
 - Vertices with consecutive IDs allocated together

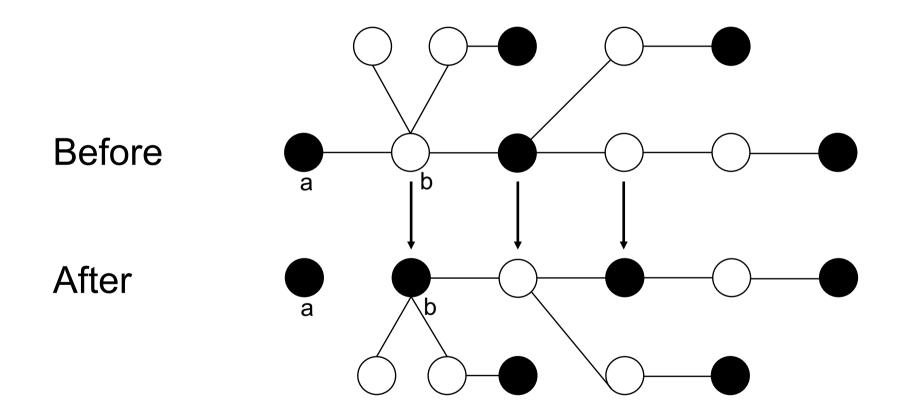
Preprocessing

- 1 coordinator machine: M_C
 - All updates are sent to it
 - Store additional information
 - Update history \mathcal{H} : last $O(\sqrt{N})$ updates
 - Corresponding machine storing statistics for each range of IDs
 - Memory available in each machine
 - Coordinate other machines to perform the update
 - Updated automatically

Insertion



Deletion



- For each update to the graph
 - Update vertex neighbors based on \mathcal{H}
 - Might move vertices to another machine if fit
 - Update each machine in a round-robin fashion
 - Updated after at most $O(\sqrt{N})$ updates

Result

- Complexity of the dynamic algorithm
 - Number of rounds per update
 - Only fixed number of vertices need to be updated
 - Number of active machines & Total communication per round
 - Number of edge updates not yet updated: $O(\sqrt{N})$
 - Size of moved vertices: at most the memory of each machine, $O(\sqrt{N})$

Conclusion

• The fully-dynamic algorithm in the DMPC model maintains a maximal independent set in O(1) rounds per update, while the number of machines that are active per round is O(1), and the total communication per round is $O(\sqrt{N})$

- 1. What are the benefits of a dynamic algorithm?
- 2. What are the restrictions of the DMPC algorithm?
- 3. Is the use of a coordinator in the dynamic algorithm to simulate a centralized algorithm?

Thank you!