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1 Introduction

Big data and data analytics have become increasingly popular over the years, with the
growing volume and variety of available data, and cheaper and more powerful computa-
tional processing. However, traditional data mining algorithms are becoming insufficient
when performing computation on massive amounts of data, so parallel computing is intro-
duced to increase the available computation power and to speed up application processing
[1]. Parallel computing is a type of computing architecture where applications, computa-
tions, or processes are executed simultaneously. It basically breaks a larger task into several
very similar smaller tasks so that they can be run independently at the same time, and their
results are later combined upon completion. Parallel computing is widely used in various
fields, such as climate prediction, fluid dynamics, and cryptology, in order to resolve their
needs for speed.

One of the most popular models of parallel computing is the Massive Parallel Compu-
tation (MPC) model, which is seen as the canonical model for dealing with large scale data
nowadays. It consists of machines with a large number of processors performing a set of
coordinated tasks in synchronism [6]. And the main objective in the analysis of algorithms
in the MPC model is to solve a problem with constant number of rounds while minimizing
the amount of communication performed per round [5].

Although the MPC model is able to process massive amounts of data, it takes up large
volumes of resources during computation. Also, because the datasets in the real world evolve
continuously instead of being static, algorithms and models are forced to be re-executed after
small modifications occur to the data, which leads to excessive processing time and resource
requirements. As a result, researches of dynamic algorithms in traditional computing models
are greatly promoted, since they are able to adjust and maintain solutions to given problems
throughout input data modifications by performing only limited computation.

In this project, I aim to implement and test the dynamic algorithm in the Dynamic
Massive Parallel Computation (DMPC) model by Italiano et al. [9] on an alternative graph-
theoretic problem, the maximal independent set.
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2 Literature Review

2.1 Classic MPC

The classic MPC model was first introduced in [10], and later refined. For a set of µmachines
M1, ...,Mµ that exchange messages in synchronous rounds, each machine is able to send and
receive messages of up to the size of its local memory, which is S bits, at each round. We
assume that S, µ ∈ O(N1−ε), where N is the size of the input and ε is efficiently small,
then the total communication per round is bounded by S · µ ∈ O(N2−2ε). For any MPC
algorithms, there are three parameters that need to be bounded:

• Machine Memory: The total memory used by each machine per round is O(N1−ε).

• Total Memory: The total amount of data communicated per round is O(N2−2ε).

• Rounds: The number of rounds is O(logi n), for a small i ≥ 0.

2.2 MPC for Graph Problems

The concept of MPC is extensively studied in recents year. However, there exists a very
important bottleneck in designing efficient MPC algorithms for graph problems when the
space per machine is much smaller than the number of vertices n - it requires Ω(log k) rounds
to find a vertex at distance k from a given vertex [4]. For example, based on the 2-CYCLE
conjecture, even distinguishing a graph consisting of single cycle of length n from 2 cycles of
size n/2 requires Ω(log n) rounds [11] [12]. Another one of the graph problem in the MPC
model is the minimum spanning tree, which was recently proved to be solved in O(log n)
rounds using an overall space of Õ(n1+ε) for some constant ε < 1 [3].

It took almost 10 years for researchers to overcome the O(log n) barrier for computing
approximate matching problems, and only very recently did Ghaffari and Uitto [8] implement
an algorithm that can compute a (1+ε)-approximate matching in Õ(

√
log ∆) rounds using

sub-linear memory, where ∆ is the maximum degree in the graph. Under the same memory
assumption, Andoni et al. [2] showed that connected components was able to be run in
Õ(logD) rounds, where D is the diameter of the graph. In addition, the computation of
maximal independent set can be solved by the algorithm in [8] also in Õ(

√
log ∆) rounds.

And this result is now improved by himself to simple O(log log ∆) round with Õ(n) memory
per machine [7].

2.3 Dynamic Algorithm for MPC

For a dynamic algorithm, the objective is to minimize the time spent and sometimes even
the space required for updating the solution to a problem while the input gets modified.
Unlike the classic MPC model, which has strictly sublinear memory of Ω(n) and requires
O(log n) rounds to recompute a solution, the dynamic algorithm in the DMPC model hopes
to establish some bounds for certain characteristics during recomputation:

• The number of machines active in each round

• The total amount of communication in each round

• The number of rounds required to update the solution
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We can see that by bounding the number of active machines involved in the communi-
cation, we also imply the same bound on the amount of data that are sent in one round.
While an ideal dynamic algorithm, which processes an input update in a constant number of
rounds, using constant number of machines and constant amount of total communication, is
often hard to achieve, a dynamic algorithm should at least use polynomially less resources
than a static MPC model [9].
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