— Dynamic Massive Parallel Computation Model for Graph
Problems —

Isabelle Liu
School of Computer Science
Carleton University
Ottawa, Canada K1S 5B6

1sabelleliu@cmail. carleton. ca

December 5, 2019

Abstract

The Massive Parallel Computation (MPC) model is becoming increasingly popular
during the past few years due to its ability to satisfy the needs of modern applications
that often require performing computations on data of massive scale. However, since
the datasets in real world are constantly evolving, the static datasets assumption of
MPC seems to be a critical limitation. In order to overcome this problem, studies
of dynamic algorithms in the MPC model are conducted, and the Dynamic Massive
Parallel Computation (DMPC) model is introduced. The DMPC model strengthens the
MPC model by maintaining a solution to a problem more efficiently than recomputing
the solution from scratch with the static algorithm. And this extension allows us to
achieve, for algorithms of new graph problems, much lower computational complexity
compared to that in the classic MPC model. In particular, we show that a maximal
independent set can be maintained with O(1) rounds, O(1) active machines, and O(v/N)
communication per round.

1 Introduction

Big data and data analytics have gained popularity over the last decade, with the grow-
ing volume and variety of available data, and cheaper and more powerful computational
processing. However, traditional data mining algorithms are becoming insufficient when
performing computation on massive amounts of data, so parallel computing is introduced
to increase the available computation power and to speed up application processing [1].
Parallel computing is a type of computing architecture where applications, computations,
or processes are executed simultaneously. It basically breaks a larger task into several very
similar smaller tasks so that they can be run independently at the same time, and their
results are later combined upon completion. Parallel computing is widely used in various
fields, such as climate prediction, fluid dynamics, and cryptology, in order to resolve their
needs for speed.

One of the most popular models of parallel computing is the Massive Parallel Compu-
tation (MPC) model, which is seen as the canonical model for dealing with large scale data
nowadays. It consists of machines with a large number of processors performing a set of
coordinated tasks in synchronism [10]. And the main objective in the analysis of algorithms

in the MPC model is to solve a problem with constant number of rounds while minimizing
the amount of communication performed per round [9].

Although the MPC model is able to process massive amounts of data, it takes up large
volumes of resources during computation. Also, because the datasets in the real world
evolve continuously instead of being static, algorithms and models are forced to be re-
executed after small modifications occur to the data, which leads to excessive processing
time and resource requirements. As a result, researches of dynamic algorithms in traditional
computing models are greatly promoted, because they are able to adjust and maintain
solutions to given problems throughout input data modifications by performing only limited
computation.

1.1 Problem Statement

In this project, I aim to implement and test the dynamic algorithm in the Dynamic Massive
Parallel Computation (DMPC) model by Italiano et al. [13] on an alternative graph-theoretic
problem, the maximal independent set (MIS). An MIS of a graph is one of the most well-
studied problems in distributed and parallel settings and has diverse applications. Therefore,
the ability to obtain and maintain an MIS efficiently is extremely crucial. My experiment
validates the usefulness and importance of the dynamic algorithm since it shows a significant
speed up from the classic MPC algorithm.

1.2 Organization of the Paper

In section 2, we will review the relevant literature and background. Then, section 3 will
describe our model, the terminology that will be used in the paper, and the preprocessing
process. In section 4, we will present the maximal independent set algorithm. Finally,
section 5 will conclude the paper.

2 Literature Review

2.1 Classic MPC

The classic MPC model was first introduced in [14] as the MapReduce Class (MRC), a
computational model using MapReduce paradigm that interleaves sequential and parallel
computation. In order for it to be practical, the model limited the number of machines and
the memory per machine to be substantially sublinear in the size of the input. However,
they placed very loose restrictions on the computational power of any individual machine,
allowing it to run in polynomial time.

The model was later refined. For a set of © machines M, ..., M), that exchange messages
in synchronous rounds, each machine is able to send and receive messages of up to the size
of its local memory, which is S bits, at each round. We assume that S, u € O(N'7¢), where
N is the size of the input and € is efficiently small, then the overall amount of memory
available across all machines in the system is bounded by S - u € O(N?72¢), thus the same
restriction applies to the total communication per round. For any MPC algorithms, there
are three parameters that need to be bounded:

e Machine Memory: The total memory used by each machine per round is O(N!~¢).

e Total Memory: The total amount of data communicated per round is O(N272¢).

e Rounds: The number of rounds is O(log’ n), for a small i > 0.

2.2 MPC for Graph Problems

The concept of MPC is extensively studied in recents year. However, there exists a very
important bottleneck in designing efficient MPC algorithms for graph problems when the
space per machine is much smaller than the number of vertices n - it requires 2(log k) rounds
to find a vertex at distance k from a given vertex [6]. For example, based on the 2-CYCLE
conjecture, even distinguishing a graph consisting of single cycle of length n from 2 cycles of
size n/2 requires)(logn) rounds [15] [16]. Another one of the graph problem in the MPC
model is the minimum spanning tree, which was recently proved to be solved in O(logn)
rounds using an overall space of O(n'*€) for some constant ¢ < 1 [5].

It took almost 10 years for researchers to overcome the O(logn) barrier for computing
approximate matching problems, and only very recently did Ghaffari and Uitto [12] imple-
ment an algorithm that can compute a (1+¢)-approximate matching in O(y/log A) rounds
using sub-linear memory, where A is the maximum degree in the graph. Under the same
memory assumption, Andoni et al. [2] showed that connected components was able to be
run in é(log D) rounds, where D is the diameter of the graph. In addition, the computa-
tion of maximal independent set can be solved by the algorithm in [12] also in O(y/Tog &)
rounds. And this result is now improved by themselves to simple O(loglog A) round with
O(n) memory per machine [11].

2.3 Dynamic Algorithm for Maximal Independent Set

A dynamic graph algorithm is called incremental if it allows edge insertions only, decremen-
tal if it allows edge deletions only, and fully-dynamic if it allows an intermixed sequence of
both edge insertions and edge deletions [13|. A simple greedy algorithm can compute an
MIS of a static graph in O(m) time, where m is the number of edges in the graph. As such,
an MIS can be trivially maintained in O(m) time by simply recomputing it from scratch
after each update.

The first dynamic MIS algorithm was given by Censor-Hillel et al. [8], which required
Q(A) update time in the sequential setting. Later in a breakthrough, Assadi et al. [3]
presented a deterministic fully-dynamic algorithm requiring O(min{A, m3/*}) amortized
time, breaking the natural Q(m) barrier for all graphs. This result was further improved in
a series of subsequent researches, leading to a randomized algorithm also by Assadi et al. [4]
that needed O(min{\/n,m'/3}) update time. Currently, the best algorithm maintains an
MIS of a fully-dynamic graph in polylogarithmic time [7]. It takes O(log? A log? n) expected
time per update, and can be adjusted to have O(log2 A log4 n) worst-case update-time with
high probability.

2.4 Dynamic Algorithm for MPC

Dynamic algorithms maintain a solution to a given problem throughout a sequence of mod-
ifications to the input data. For a dynamic algorithm, the objective is to minimize the
time spent and sometimes even the space required for updating the solution to a problem

while the input gets modified. Unlike the classic MPC model, which has strictly sublinear
memory of Q(n) and requires O(logn) rounds to recompute a solution, the dynamic algo-
rithm in the DMPC model hopes to establish some bounds for certain characteristics during
recomputation:

e The number of machines active in each round
e The total amount of communication in each round

e The number of rounds required to update the solution

We can see that by bounding the number of active machines involved in the communi-
cation, we also imply the same bound on the amount of data that are sent in one round.
While an ideal dynamic algorithm, which processes an input update in a constant number of
rounds, using constant number of machines and constant amount of total communication, is
often hard to achieve, a dynamic algorithm should at least use polynomially less resources
than a static MPC model [13].

3 The Model

3.1 Terminology

Let G = (V, E) be a graph, where V is the set of vertices and F is the set of edges in the
graph. The number of vertices in the graph is n = |V, and the number of edges is m = |E]|.
In this work, we reference the lezicographically first maximal independent set (LEMIS) that
was used by Behnezhad [7]. It is obtained according to a ranking = : V' — [0, 1] over the
vertices in V. Initially, every vertex in V is alive. We iteratively take the alive vertex v
with the minimum rank 7(v), add v to the MIS, and kill v and all of its alive neighbors.
Therefore, v joins the MIS if none of its already processed neighbors have joined it before.
We define several terms to describe each vertex:

o LFMIS(G,7): The subset of all vertices that joined the MIS

e deg(v): The degree of vertex v

N7 (v): The set of neighbors of v in the MIS
N-

)

e count(v): The number of neighbors of vertex v that are in the MIS
)
)

(v): The set of neighbors of v not in the MIS

e ID: Assign an ID (1,...,n) to each vertex based on its ranking m

3.2 MPC Model

Since the dynamic algorithm in our model takes a graph as an input, the input size N is
equal to n + m, which is the total number of vertices and edges in the graph. In addi-
tion, our algorithm is required to use a very limited amount of memory in each machine.
Specifically, as our input is of size N, each machine is allowed to use only O(\/N) memory.
As a result, we make use of O(v/N) machines. The computation proceeds in rounds. In
each round, the O(\/N) machines receive messages from the previous round and process the

data stored in their own memory without communicating with each other. Then, each ma-
chine sends messages to other machines. And at the end of the computation, the output is
stored across the different machines and is output collectively. The data output by each ma-
chine is at most the size of O(v/N) because it has to fit in the local memory of each machine.

We have one of the machines act as a coordinator, denoted by M¢, and it stores an
update-history H of the last O(v/N) updates in both the input and the maintained so-
lution, i.e., which edges have been inserted into and deleted from the input in the last
VN updates and which vertices have been inserted into and deleted from the maintained
LEMIS(G,). All updates are sent to this single, arbitrary, but fixed machine that keeps
additional information on the status of the maintained solution, and it then coordinates the
rest of the machines to perform the update, by sending them large messages containing the
additional information that it stores.

We also dedicate O(n/+v/N) machines to store statistics about the vertices of the graphs,
such as their degree, whether they are in the MIS, how many of their neighbors are in
the MIS, which of their neighbors are in or not in the MIS, and the machine storing their
neighbors. In order to keep track of which machine keeps information about which vertices,
many vertices with consecutive IDs are allocated together to a single machine so that we
can store the range of IDs that are stored in each machine. Hence in M¢, except for the
update history H, we also store for each range of vertex IDs the machine that contains their
statistics. Finally, M¢ also stores the memory available in each machine.

4 Fully-Dynamic DMPC Algorithm for Maximal Independent
Set

In this section, we apply the deterministic fully-dynamic DMPC algorithm to the maximal
independent set. Our algorithm demonstrates that when restricting the memory of each
machine to Q(v/N) bits, the maximal independent set can be maintained in a constant
number of rounds per update, a constant number of active machines per round, and a total
communication of O(v/N) per round.

For each update to the graph, we assume that the update history H is updated auto-
matically. In addition, the update on the statistics of a vertex, such as its degree, whether
it is in the MIS, the machine storing its alive neighboring vertices, etc., can be done in O(1)
rounds using a message through the coordinator machine M¢c. Then after each update, we
update the information stored in a machine by executing those updates in a round-robin
fashion. And since we use O(v/N) machines in the algorithm, each machine can be updated
after at most O(v/N) updates.

4.1 Supporting Function

We propose a set of supporting procedures to help with the edge updates and to guide the
vertex allocation into machines throughout the sequence of updates.

e getNbr(z): Returns the ID of the machine that stores the neighboring vertices of x.

e getDegInMachine(M, x): Returns the degree of x in machine M.

4.2

fits(M, s): Return true if s vertices fit into machine M, and false otherwise.

toF'it(s): Returns the ID of a machine that has enough memory to store s vertices,
and the available space in that machine.

addEdge((x,y)): We only describe the procedure for z, as the case for y is completely
analogous. If y fit into getNbr(zx), we simply add y into getNbr(x). If y does not fit
in get Nbr(x), then call moveVertices(z, s, My, toF'it(s), 1), where s is the number of
vertices of x. If all of the remaining vertices in the machine M, (of vertices other than
x) fit into another machine, then move them there, in order to bound the number of
used machines.

moveVertices(x, s, M1, Ma, H): First, remove from machine M; deleted vertices of =
based on H. Second, send from M7 up to s vertices of x to Ms. If the s vertices do not
fit into Mo, move the neighbors of z from M to a machine that fits them, i.e., execute
M, = toF'it(s+ getDegInMachine(Ms, x)), and call moveVertices(x,s, My, My, H)
and moveVertices(xz, get DegInMachine(Ma, x), Mo, My, H).

updateVertex(x,H): Update the neighbors of x that are stored in M, = getNbr(x)
based on H. If the set of vertices of z does not fit in M, after the update, call
moveVertices(x, s, My, toFit(s), H), where s is the number of vertices of z. If all of
the remaining vertices in the machine M, (of vertices other than z) fit into another
machine, then move them there, in order to bound the number of used machines.

updateM achine(M,H): Update all adjacency lists stored in machine M to reflect the
changes in the update history H. If all of the remaining vertices of the machine fit
into another half-full machine, then move them there, in order to bound the number
of used machines.

Handling Update

Now we explain how our algorithm updates the maintained maximal independent set after
an edge update.

4.2.1 Insertion

On insertion of an edge (x,y), update is required only in case both vertices are in the MIS.

1.

2.

Execute updateVertex(x,H), updateVertex(y, H), and addEdge((x,y)).

If m(x) < w(y), keep = in LEMIS(G,) and remove y from LEMIS(G,).

. If there is a neighbor u of y with m(u) > 7(y) and none of whose neighbors are in the

MIS, add all such v to LEMI1S(G,). Otherwise, do nothing and return.

. If 7(y) < mw(x), proceed analogously.

. In any case, the update-history is updated to reflect all the changes caused by the

insertion of (z,y).

4.2.2 Deletion

In case of deletion of an edge (z,y), update is required when only one of them is in the MIS.

1. Call updateVertex(x,H) and updateVertex(y, H).
2. Assume z € {z,y} is not in LEMIS(G,).

3. If no neighbors u of z with 7m(u) < m(z) are in the MIS, add z into LFMIS(G,).
Otherwise, do nothing and return.

4. If a neighbor v of z with w(v) > 7(2) is in LFMIS(G,), remove it from the MIS.

5. Check if there exists a neighbor w of v whose neighbors are all not in the MIS; if yes,
add all such w to LFMIS(G,).

6. In any case, the update-history is updated to reflect all the changes caused by the
deletion of (z,y).

4.3 Algorithmic Complexity

In our dynamic algorithm, both the insertion and deletion of an edge run in O(1) rounds,
use O(1) machines, and generate O(v/N) communication per round. For each update, we
can access the machine that stores the neighboring vertices of a vertex in O(1) rounds, and
only a fixed number of vertices need to be updated. All supporting functions are trivially
executable in O(1) rounds. In addition, as each machine is updated every O(v/N) rounds, it
follows that the number of edges that have been inserted into or removed from the graph and
the machines storing those edges that are not yet updated, is O(v/N). And since all the calls
to moveVertices transfer at most O(v/N) vertices of 2 due to the memory limitation for
each machine being O(v/N), there is at most a constant number of calls to moveVertices.

5 Conclusions

We have implemented the dynamic algorithm in the Dynamic Massive Parallel Computation
model by Italiano et al. [13|, an extension of the widely popular Massive Parallel Compu-
tation algorithm, and tested it on a fundamental graph problem, maximal independent set.
We present that this fully-dynamic algorithm maintains a maximal independent set in O(1)
rounds per update, while the number of machines that are active per round is O(1), and
the total communication per round is O(v/N). As future research, it would be interesting
to apply the algorithm to other problems, such as the graph coloring.

References

1]

2]

13l

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

Parallel computing — Wikipedia, the free encyclopedia. https://en.wikipedia.org/
wiki/Parallel_computing, 2019. [Online; accessed 26-September-2019).

A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong. Parallel graph connectivity in log
diameter rounds. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 674-685, 2018.

Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic
maximal independent set with sublinear update time. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 815-826, New
York, NY, USA, 2018. ACM.

Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic
maximal independent set with sublinear in n update time. In Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 19, pages 1919-
1936, Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathematics.

M. H. Bateni, S. Behnezhad, M. Derakhshan, M. T. Hajiaghayi, and V. Mirrokni.
Massively parallel dynamic programming on trees, 2018.

S. Behnezhad, L. Dhulipala, H. Esfandiari, J. Lacki, V. Mirrokni, and W. Schudy. Mas-
sively parallel computation via remote memory access. In The 31st ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 19, pages 59-68, New York,
NY, USA, 2019. ACM.

Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and
Madhu Sudan. Fully dynamic maximal independent set with polylogarithmic update
time, 2019.

Keren Censor-Hillel, Elad Haramaty, and Zohar Karnin. Optimal dynamic distributed
MIS. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Com-
puting, PODC ’16, pages 217-226, New York, NY, USA, 2016. ACM.

D. Durfee, L. Dhulipala, J. Kulkarni, R. Peng, S. Sawlani, and X. Sun. Parallel batch-
dynamic graphs: Algorithms and lower bounds, 2019.

S. E. Fahlman, G. E. Hinton, and T. J. Sejnowski. Massively parallel architectures for
Al: NETL, thistle, and boltzmann machines. pages 109-113, 1983.

M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrovi¢, and R. Rubinfeld. Improved mas-

sively parallel computation algorithms for MIS, matching, and vertex cover, 2018.

M. Ghaffari and J. Uitto. Sparsifying distributed algorithms with ramifications in mas-
sively parallel computation and centralized local computation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages
1636-1653, Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathe-
matics.

G. F. Italiano, S. Lattanzi, V. S. Mirrokni, and N. Parotsidis. Dynamic algorithms for
the massively parallel computation model. In The 81st ACM Symposium on Parallelism

[14]

[15]

[16]

in Algorithms and Architectures, SPAA 19, pages 49-58, New York, NY, USA, 2019.
ACM.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for mapreduce. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 10, pages 938-948, Philadelphia, PA, USA, 2010. Society
for Industrial and Applied Mathematics.

T. Roughgarden, S. Vassilvitskii, and J. R. Wang. Shuffles and circuits: (on lower
bounds for modern parallel computation). In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’16, pages 1-12, New York, NY,
USA, 2016. ACM.

G. Yaroslavtsev and A. Vadapalli. Massively parallel algorithms and hardness for single-
linkage clustering under /,-distances. In 85th International Conference on Machine
Learning, ICML 18, 2018.

