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ABSTRACT

Finding a maximal independent set (MIS) in a graph is a cor-
nerstone task in distributed computing. The local nature of
an MIS allows for fast solutions in a static distributed set-
ting, which are logarithmic in the number of nodes or in
their degrees. The result trivially applies for the dynamic
distributed model, in which edges or nodes may be inserted
or deleted. In this paper, we take a different approach which
exploits locality to the extreme, and show how to update an
MIS in a dynamic distributed setting, either synchronous
or asynchronous, with only a single adjustment and in a
single round, in expectation. These strong guarantees hold
for the complete fully dynamic setting: Insertions and dele-
tions, of edges as well as nodes, gracefully and abruptly.
This strongly separates the static and dynamic distributed
models, as super-constant lower bounds exist for computing
an MIS in the former.

Our results are obtained by a novel analysis of the sur-
prisingly simple solution of carefully simulating the greedy
sequential MIS algorithm with a random ordering of the
nodes. As such, our algorithm has a direct application as a
3-approximation algorithm for correlation clustering. This
adds to the important toolbox of distributed graph decom-
positions, which are widely used as crucial building blocks
in distributed computing.

Finally, our algorithm enjoys a useful history-independence
property, meaning the output is independent of the his-
tory of topology changes that constructed that graph. This
means the output cannot be chosen, or even biased, by the
adversary in case its goal is to prevent us from optimizing
some objective function.

1. INTRODUCTION

Dynamic environments are very common in distributed
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settings, where nodes may occasionally join and leave the
network, and communication links may fail and be restored.
This makes solving tasks in a dynamic distributed setting of
fundamental interest.

Solutions for problems from the static distributed setting
translate nicely into the dynamic distributed setting, by run-
ning them in response to topology changes, in order to ad-
just the output [6l7,46]. This can be quite efficient especially
for local problems, such as finding a maximal independent
set (MIS) in the network graph. The cornerstone MIS prob-
lem admits fast distributed solutions whose complexities are
logarithmic in the size of the graph or in the degrees of the
nodes [2,/28[36},49].

In this paper, we exploit locality to the extreme and
present an MIS algorithm for the dynamic distributed set-
ting, which surprisingly requires in expectation only a sin-
gle adjustment and a single round. The adjustment mea-
sure of an algorithm is the number of nodes that need to
change their output in response to the topology change.
These strong guarantees hold for both synchronous or asyn-
chronous models, and for the complete fully dynamic set-
ting, i.e., we handle all cases of insertions and deletions,
of edges as well as nodes, gracefully and abruptlyEl This is
a strong separation between the static model and dynamic
distributed model under an oblivious adversary, as super-
constant lower bounds exist for the static setting [43/{48]. We
further prove that for any deterministic algorithm, there is
a topology change that requires n adjustments in the worst
case, with n being the number of nodes, thus we also strongly
separate randomized and deterministic solutions. Below, we
overview the challenge we face, our technique for overcoming
it, and the applications of our result.

1.1 Is This Not Trivial?

Indeed, the local structure of an MIS allows the nodes to
easily detect whether it has suffered from a topology change.
At a first glance, it may seem trivial to fix an MIS after a
single topology change, as described nex

Suppose a new node is inserted into the graph. The node
simply has to check whether it is connected to any MIS node
and enter the MIS if and only if the answer is no. In partic-
ular, no other node needs to change its output. Similarly, it
is an easy exercise to check that if an edge {u, v} is deleted,
at most one node needs to change its output.

Despite being simple, these two examples are misleading
as they do not capture what happens in case of other topol-

1See definitions of topology changes in Section
2The cautious reader should remain suspicious.
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ogy changes. Suppose an MIS node v is deleted from the
graph. All of the nodes who were previously neighbors of v,
i.e., who were in N(v), now need to check whether they still
have MIS neighbors. This can be a large number of nodes
who may need to change their output. This alone is still not
a problem from the communication perspective, since no
other node needs to change its output, and the nodes who
were in N(v) detect this immediately along with detecting
the topology change. However, the crucial difficulty here is
that these nodes need to coordinate their decisions. If two
nodes in N(v) are connected by an edge, then only one of
them can enter the MIS. In general, the induced subgraph
N (v)\{v} can have any structure, and deciding which nodes
enter the MIS (among those who now do not have a neigh-
bor in the MIS) is equivalent to constructing an MIS on the
induced subgraph N(v) \ {v} from scratch. As this graph
can be linear in the size of the original graph, this would
lead to fixing the MIS being asymptotically as expensive as
structuring it from scratch.

1.2 Our Contribution

Our approach is surprisingly simple: We simulate the
greedy sequential algorithm for solving MIS. The greedy se-
quential algorithm orders the nodes and then inspects them
by increasing order. A node is added to the MIS if and
only if it does not have a lower-order neighbor already in
the MIS. We consider random greedy, the variant of greedy
in which the order is chosen uniformly at random. Con-
sider simulating random greedy in a dynamic environment
with the following template (ignoring the model of compu-
tation/communication for the moment). Each node needs
to maintain the invariant that its state depends only on the
states of its neighbors with lower order, such that it is in
the MIS if and only if none of its lower order neighbors are
in the MIS. When a change occurs in the graph, nodes may
need to change their output, perhaps more than once, until
they form a new MIS. Our key technical contribution is in
proving:

Theorem [I For any arbitrary change in the graph, the
expectation over all random orders, of the number of nodes
that change their output in the above random greedy tem-
plate is at most 1.

The Challenge: We denote by 7 the random order of
nodes, we denote by v* the only node (if any) for which the
above invariant does not hold after the topology change, and
we denote by S the set of nodes that need to be changed in
order for the invariant to hold again at all nodes. We look at
S’, the set of nodes that would have needed to be changed
if the order was as in 7, except for pushing v* to be the first
node in that order. The definition of S’ does not depend on
the real order of v™ in 7. Therefore, we can prove that S can
either be equal to S’ if the order of v* in 7 is minimal in S’,
and empty otherwise. Now the question is, what is the prob-
ability, given S’, that v* is indeed its minimal order node?
The answer is that if S’ were deterministic, i.e. independent
of m, the probability would be 1/|S’|. However, S’ is a ran-
dom set and having knowledge of its members restricts 7 to
be non-uniform, which in turn requires a careful analysis of
the required probability. To overcome this issue, we prove
that the information that S’ gives about 7 is either about
the order between nodes not in S’, or about the order within
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S"\{v*}, which both do not affect the probability that v* is
the minimal in S’.

Distributed Implementation: This powerful state-
ment of E[|S|] <1 directly implies that a single adjustment
is sufficient for maintaining an MIS in a dynamic setting.
A direct distributed implementation of our template implies
that in expectation also a single round is sufficient. This
applies both to the synchronous and asynchronous models,
where the number of rounds in the asynchronous model is
defined as the longest path of communication.

Obtaining O(1) Broadcasts and Bits: In fact, in the
synchronous model, it is possible to obtain an expected num-
ber of O(1) broadcasts and bits. Here the number of broad-
casts is the total number of times, over all nodes, that any
node sends a O(logn)-bit broadcast message (to all of its
neighbors)’| Moreover, since we only need a node to know
the order between itself and its neighbors, using a similar
technique to that of [51], we obtain that in expectation, a
node only needs to send a constant number of bits in each
broadcast. The above holds for edge insertions and dele-
tions, graceful node deletion, and node unmuting (which is
defined formally in Section , while for an abrupt deletion
of a node v* we will need O (min{log(n), d(v*)}) broadcasts,
and for an insertion of a node v* we will need O(d(v*))
broadcasts, in expectation.

This is done with a careful dynamic distributed imple-
mentation (Section which guarantees that each node that
changes its output does so at most O(1) times, as opposed
to the direct distributed implementation [} Hence, obtain-
ing these broadcast and bit complexities comes at a cost
of increasing the round complexity, but it remains constant
(albeit not 1).

Matching Lower Bounds: We claim that any deter-
ministic algorithm requires n adjustments in the worst case,
which can be seen through the following example. Let A
be a dynamic deterministic MIS algorithm. Let Go be the
complete bipartite graph over two sets of nodes of size k.
We denote by L the side of Gy that is chosen to be the MIS
by A, and we denote the other side by R. For every i € [k]
let G; be the graph obtained after deleting i nodes from
L, and consider executing A on Go, G1, ..., Gi. For every 1,
since G; is a complete bipartite graph, one of the sides has
to be the MIS. Since G} contains only disconnected nodes
of R then R is the only MIS of G. This implies that after
some specific change along the sequence, the side of the MIS
changes from L to R. In this topology change, all of the
nodes change their output.

This gives a strong separation between our result and de-
terministic algorithms. Moreover, it shows that (1) the ex-
pected adjustment complexity of any algorithm must be at
least 1, as we have a sequence of k topology changes that
lead to at least k adjustments, and (2) it is impossible to
achieve high probability bounds that improve upon a sim-
ple Markov bound. Specifically, this explains why we obtain
our result in expectation, rather than with high probability.

3We emphasize that the term broadcast is used here to in-
dicate the more restricted setting of not being able to send
different messages to different neighbors in the same round.
It does not refer to a wireless setting of communication.
“This bears some similarity to the method in |60], where
the number of mowves is reduced in an MIS self-stabilizing
algorithm by adding a possible wait state to the standard in
MIS and not in MIS states.



This is because the example can be inserted into any larger
graph on n nodes, showing that for every value of k, there
exists an instance for which at least Q(k) adjustments are
needed with probability at least 1/k.

Approximate Correlation Clustering: In addition to
the optimal complexity guarantees, the fact that our algo-
rithm simulates the random greedy sequential algorithm has
a significant application to correlation clustering. Correla-
tion clustering requires the nodes to be partitioned into clus-
ters in a way that minimizes the sum of the number of edges
outside clusters and the number of non neighboring pairs
of nodes within clusters (that is, missing edges within clus-
ters). Ailon et al. |1] show that random greedy obtains a
3-approximation for correlation clustering’| by having each
MIS node inducing a cluster, and each node not in the MIS
belonging to the cluster induced by the smallest random ID
among its MIS neighbors. This directly translates to our
model, by having the nodes know that random ID of their
neighbors. Graph decompositions play a vital role in dis-
tributed computing (see, e.g., [54]), and hence the impor-
tance of obtaining a 3-approximation for correlation cluster-
ing.

History Independence: Finally, our algorithm has a
useful property, which we call history independence (in full
version [16]) , which means that the structure output by the
algorithm (e.g., the MIS) depends only on the current graph,
and does not depend on the history of topology changes.
This means that the output cannot be chosen, or even bi-
ased, by the adversary, in case its goal is to prevent us from
optimizing some objective function. Moreover, history inde-
pendent algorithms compose nicely, which allows us to ob-
tain history independent coloring and matching algorithms,
using standard reductions.

1.3 Previous Work

A strongly related previous work is that of Koénig and
Wattenhofer [39], where they also show that the above can
be obtained in a single round. However, their setting differs
crucially from ours, by two major aspects. In their solution,
an MIS node that needs to be removed from the MIS (fol-
lowing a topology change) already has a “last will” for it in
the local states of its neighbors, which tells each of them
whether it should enter the MIS or not. This constitutes
the first huge difference: our algorithm updates only a sin-
gle state in expectation. But even more critical is that in
order to compute this last will, each node must be aware
of the edges between its neighbors. This is an enormous
amount of information, which can be quadratic in the size
of the network, and is therefore ruled out in our setting as
an unacceptable amount of information to be sent in a single
round. Our algorithms send only a constant number of bits
in each message.

In fact, [39] argues that without a “last will” it is impos-
sible to fix an MIS in constant time. This because a node
v that is in the MIS can be deleted, and its neighborhood
N (v) can be arbitrarily connected, which reduces the prob-
lem of fixing the solution to that of finding an MIS in N (v).
Since N(v) can have linear size, and since lower bounds on

5In the same paper, they also provide a 2.5 approximation
based on rounding a solution of a linear program. We do not
elaborate on the details of this algorithm, nor the history of
the correlation clustering problem as it is outside the scope
of our paper.
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finding an MIS are super-constant [43}|48|, this implies that
some mechanism is required in order to be able to fix an
MIS in a constant number of rounds.

However, notice that the above argument only holds un-
der the implicit assumption that the MIS and the topology
change can be arbitrary, i.e., controlled by an adaptive ad-
versary. Our contribution is exactly in making sure that
such a bad example does not occur. For this, we make the
standard assumption of an oblivious non-adaptive adversary.
This means that the topology changes do not depend on the
randomness of the algorithm. This is the standard assump-
tion in dynamic settings (see literature about sequential dy-
namic computing, e.g., |18] and references therein), where
typically an adaptive adversary that can choose the topology
changes based on the status of the data structure that the
algorithm maintains is too strong and renders most prob-
lems unsolvable in any reasonable complexity measure. An
oblivious adversary is natural also for our setting, as, for
example, an adaptive adversary can always choose to delete
MIS nodes and thereby force worst-case behavior in terms
of the number of adjustments.

1.4 Additional Related Work

Distributed MIS: Finding an MIS is a central theme
in the classical distributed setting.  The classic algo-
rithms [2/;36//49] complete within O(logn) rounds, with high
probability. More recently, a beautiful line of work reduced
the round complexity to depend on A, the maximal de-
gree in the graph. These include the O(A + log* n)-round
and O(log? A + 20(VIeglee ™)) round algorithms of [10], the
O(log Ay/logn)-round algorithm of |11, and the very re-
cent O(log A) + 20WV1°eToen)_1ound algorithm of [28]. An
excellent source for additional background and relations to
coloring can be found in [9|E|

Distributed dynamic MIS: The problem of finding a
fast dynamic distributed MIS algorithm appears as an open
problem in [24], which studies the problem of maintaining a
sparse spanner a dynamic setting. Additional problems in
a dynamic setting are also addressed in [12], and in slightly
different settings in [5}17/37}{41]. One standard approach for
maintaining an MIS is running distributed algorithms that
are designed for the static setting. This can be done for
any distributed algorithm, sometimes using a corresponding
compiler, e.g., when applied to an asynchronous dynamic
setting [6},7,/46].

One important exception is the aforementioned solution
shown by Konig and Wattenhofer (39|, which as in our al-
gorithm, requires a constant number of rounds, but as op-
posed to our algorithm, has the following two very expensive
properties: (1) the number of updates following a topology
change can be linear in the number of nodes and (2) the
size of messages can be almost quadratic in the number of
nodes. The only way to overcome item (2) is to pay the
cost of that information in terms of round complexity rather

5As in all of these static MIS algorithms, we also do not
maintain a Lexicographic MIS (LexMIS). One could argue
that our algorithm maintains an MIS that corresponds to
the random permutation over the nodes. This, however,
by itself is not as powerful as maintaining a LexMIS with
respect to any given order, say, of node IDs. In fact, any
MIS can be seen as an MIS that is induced by some order of
the nodes, so only an MIS corresponding to a specific given
order should be considered as LexMIS.



than message complexity, a solution that is very expensive
as well. We are unaware of any other work in this setting
about maintaining an MIS.

Additional distributed dynamic algorithms: In-
deed, because of its extreme importance, dynamic dis-
tributed computing is a widely studied area of research.
However, different assumptions on the setting have a sig-
nificant influence on what can be done.

A huge amount of literature is devoted to devising differ-
ent algorithms in a self-stabilizing setting (see, e.g., [20}21]
29./57] and references therein). This setting is inherently dif-
ferent from ours since it is asynchronous, and considers the
time that it takes an algorithm to stabilize as the number
of asynchronous rounds until the set of outputs satisfies the
problem specifications and all of the nodes are quiet (it is
typically not possible to actually detect this state and ter-
minate). An asynchronous round requires that each node
communicates with all of its neighbors, and hence inher-
ently implies a lot of communication (broadcasts). In our
work, we do not assume that the topology ever stops chang-
ing, and just assume that enough time is given in order to
recover from a change. This is why it is crucial to obtain
an algorithm that requires only a constant (in fact, even a
single) update and round in order to recover.

An MIS-based clustering algorithm for the asynchronous
model that appeared in |23] also uses a random node order
for recovering after a change. However, their self-stabilizing
setting differs from ours in several aspects, such as assum-
ing a bounded degree graph and discussing corrupted states
of multiple nodes and topology changes. In addition, our
techniques and analysis are completely different. In partic-
ular, the clustering obtained there may not be an approxi-
mation to correlation clustering. Furthermore, the number
of rounds required by [23] is O(log(n)) as opposed to our
single round (in expectation) algorithm.

Related, but not identical, notions of error confinement,
fault local and fault amendable algorithms have been stud-
ied in |[8]44,/45], where the internal memory of a node
may change. Another property that self-stabilizing al-
gorithms should aim for is super-stabilization [22], which
means that they are self-stabilizing (eventually output the
required structure) and also recover extremely fast from a
single topology change. Super-stabilization requires also a
small adjustment measure, which is the maximum number of
nodes that have to change their output. Our MIS algorithm
recovers from a single topology change in a constant number
of rounds, and has an adjustment measure of exactly 1, in
expectation.

Other studied models are of more severe graph changes,
whether arbitrary [42] or evolving randomly [4]. In such
models, one typically addresses problems of gathering infor-
mation rather than maintaining graph structures, as the lat-
ter is intuitively unattainable. In contrast, in this paper, we
consider a dynamic distributed setting which is in the same
spirit of the literature on sequential dynamic algorithms |18].

Simulating the sequential greedy algorithm: Simu-
lating random greedy has been used before in order to obtain
fast solutions for sequential local computation algorithms
(LCA). In this setting, the algorithm does not have access
to the entire graph, but rather an oracle access using queries
about nodes or edges, and needs to provide an approximate
solution for various problems, among which are the problems
considered in this paper. We emphasize that the models
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are inherently different, and hence is our technical analy-
sis. While we bound the size of the set of nodes that may
change their output after a topology change, studies in the
local computation literature [3,/47,/50,/52,/61] bound the size
of the set of nodes that need to be recursively queried in
order to answer a random node query. In some sense, these
sets are opposite: We begin with a single node v changing
its state due to a topology change, and look at the set of
nodes that change their state due to the change of v. Local
computation algorithms begin with a single node v and look
at the set of nodes whose states determine the state of v.
In [15], the DAG of all nodes is considered, according
to the same random order we consider here. The paper
analyzes its depth (rather than its size, which is n) and
obtains a bound of O(log?n), w.h.p. This translates to a
bound on the performance of the parallel random greedy
algorithm for finding an MIS. It also implies that w.h.p., our
algorithm finishes to update after at most O(log® n) steps.

2. DYNAMIC DISTRIBUTED
COMPUTATIONS

The distributed setup is a standard message passing
model. The network is modeled by an undirected graph
G = (V, E) where the node set is V, and E consists of the
node pairs that have the ability to directly communicate.
We assume a broadcast setting where a message sent by a
node is heard by all of its neighbors. Also, we assume a
synchronous communication model, where time is divided
into rounds and in each round any willing node can broad-
cast a message to its neighbors. We restrict the size of each
message to be O(log(n)) bits, with n = |V/| being the size
of the networ The computational task is to maintain a
graph structure, such as a maximal independent set (MIS)
or a node clustering. That is, each node has an output, such
that the set of outputs defines the required structure.

Our focus is on a dynamic network, where the graph
changes over time. As a result, nodes may need to com-
municate in order to adjust their outputs. The system is
stable is when the structure defined by the outputs satisfies
the problem requirements.

A graph topology change can be with respect to either
an edge or a node. In both cases we address both dele-
tions and insertions, both of which are further split into
two different types. For deletions we discuss both a graceful
deletion and an abrupt deletion. In the former, the deleted
node (edge) may be used for passing messages between its
neighbors (endpoints), and retires completely only once the
system is stable again. In the latter, the neighbors of the
deleted node simply discover that the node (edge) has retired
but it cannot be used for communication. For insertions, we
distinguish between a new node insertion and an unmuting
of a previously existing node. In the former, a new node is
inserted to the graph, possibly with multiple edges. In the
latter, a node that was previously invisible to its neighbors

"This is the standard assumption in a distributed setting. In
our dynamic setting where the size of the graph may change
we assume knowledge of some upper bound N > n, with
N =n°®  and restrict the message length to O(log(N)) =
O(log(n)).



but heard their communication, becomes visible and enters
the graph topologyﬂ

We assume that the system is always stable before a
change occurs. Since our algorithm requires in expectation
only an extremely short single time unit to recover, this even
allows topology changes that are more frequent compared to
other models. Specifically, many previous work in dynamic
models, whether sequential [18] or distributed [30}32}/40l/53],
assume that the topology does not change too fast, so that
there is only a single topology change at a time with suffi-
cient recovery time in between changes. Since our algorithm
runs in expectation in a super-fast constant time which is
completely independent on the size of the network, we can
in fact tolerate more changes.

We consider the performance of an algorithm according
to three complexity measures. The first is the adjustment-
complexity, measuring the number of nodes that change their
output as a result of the recent topology change. The sec-
ond is the round-complezity, which is the number of rounds
required for the system to become stable. Finally, the third,
more harsh, score is the broadcast-complezity, measuring the
total number of broadcasts.

Our algorithms are randomized and thus our results ap-
ply to the expected values of the above measures, where the
expectation is taken over the randomness of the nodes. We
emphasize that this is the only randomness discussed; specif-
ically, the result is not for a random node in the graph nor a
random sequence of changes, but rather applies to any node
and any sequence of changes. It holds for every change in
the graph, not only amortized over all changes.

In what follows we discuss the problem of comput-
ing an MIS. Here, the outputs of the nodes define a
set M, where any two nodes in M are not connected
by an edge, and any node not in M has a neighbor in
M. The second problem we discuss is that of correla-
tion clustering. Here, the objective is to find a parti-
tioning C of the node set V, where we favor partitions
with a small number of “contradicting edges”. That is,
we aim to minimize the sum .. Zu,uecﬂ[(u,vME] +

Eclqtczec ZuECl,vECz Liu,vyem)-

3. A TEMPLATE FOR MAINTAINING
A MAXIMAL INDEPENDENT SET

In this section we describe a template for maintaining
a maximal independent set (MIS). Initially, we are given
a graph G = (V, E) along with an MIS that satisfies cer-
tain properties, and after a topology change occurs in the
graph, applying the template results in an MIS that satis-
fies the same properties. That is, the template describes
what we do after a single topology change, and if one con-
siders a long-lived process of topology changes, then this
would correspond to having initially an empty graph and
maintaining an MIS as it evolves. We emphasize that the
template describes a process that is not in any particular
model of computation, and later in Section [4] we show how
to implement it efficiently in our dynamic distributed set-
ting. This also means that there are only four topology
changes we need to consider: edge-insertion, edge-deletion,
node-insertion and node-deletion. For example, the notions
of abrupt and graceful node deletions are defined with re-

8The distinction is only relevant for nodes insertions, as
there is no knowledge associated with an edge.
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spect to the dynamic distributed setting because they af-
fect communication, and therefore the implementation of
the template will have to address this distinction, but the
template itself is only concerned with a single type of node
deletion, not in any particular computation model.

Throughout, we assume a uniformly random permutation
7 on the nodes v € V. We define two states in which each
node can be: M for an MIS node, and M for a non-MIS
node. We abuse notations and also denote by M and M the
sets of all MIS and non-MIS nodes, respectively. Our goal is
to maintain the following MIS invariant: A node v is in M
if and only if all of its neighbors u € N (v) which are ordered
before it according to 7, i.e., for which 7(u) < 7(v), are not
in M. It is easy to verify that whenever the MIS invariant is
satisfied, it holds that the set M is a maximal independent
set in G. Furthermore, it is easy to verify that this invariant
simulates the greedy sequential algorithm, as defined in the
introduction.

When any of the four topology changes occurs, there is
at most a single node for which the MIS invariant no longer
holds, as we explain next and in Footnote[0] We denote this
node by v* = v*(Gold, Gnew, T), where Goig and Grew are the
graphs before and after the topology change. For an edge
insertion or deletion, v™ is the endpoint with the larger order
according to 7. For a node insertion or deletion, v* is that
nod In case the topology change is an edge change, we
will need also to take into consideration its other endpoint.
We denote it by v™* = v**(Gold, Gnew, T), and notice that
by our notation, it must be the case that 7(v**) < w(v*). In
order to unify our proofs for all of the four possible topology
changes, we talk about a node v** also for node changes.
In this case we define v** to be v* itself, and we have that
m(v**) = w(v™). Therefore, for any topology change, it holds
that 7w(v**) < 7(v™).

To describe our template, consider the case where a new
edge is inserted and it connects two nodes w(v**) < 7(v™),
where both nodes are in M. As a result, v* must now
be deleted from the MIS and hence we need to change its
state. Notice that as a result of the change in the state of
v*, additional nodes may need their state to be changed,
causing multiple state changes in the graph. An impor-
tant observation is that it is possible that during this pro-
cess of propagating local corrections of the MIS invariant,
we change the state of a node more than once. As a sim-
ple example, consider the case in which v* has two neigh-
bors, ui and wg, for which 7(v*) < w(u1), 7(u2), and that
u1 and wug are connected by a path (u1,wi,ws,u2), with
m(ur) < m(wi) < m(wz) < 7(uz2). Now, when we change the
state of v* to 1\7[, both w1 and w2 need to be changed to M,
for the MIS invariant to hold. This implies that w; needs to
be changed to M and w2 needs to be changed to M. In this
case, since m(wz) < m(u2), the node u2 needs to be changed
back to state M.

The above observation leads us to define a set of influ-
enced nodes, denoted by S = S(Goid, Gnew, ), containing

9For a node deletion, we slightly abuse the definition of v* in
order to facilitate the presentation, and consider it to be the
deleted node. This means that here we consider an interme-
diate stage of having v* still belong to the graph w.r.t. the
MIS invariant of all the other nodes, but for v™ the MIS in-
variant no longer holds. This is in order to unify the four
cases, otherwise we would have to consider all of the neigh-
bors of a deleted node as nodes for which the MIS invariant
no longer holds after the topology change.



v* in the scenario where we need to change its state, and all

other nodes whose state we must subsequently change as a
result of the state change of v*. To formally define the set
S we introduce some notations. The notations rely on the
graph structure of Gnew unless the change is a node deletion
in which case they rely on Goq. For each node u, we define
I.(u) = {v € N(u) | m(v) < w(u)}, the set of neighbors of
u that are ordered before it according to w. These are the
nodes that can potentially influence the state of u according
to the MIS invariant. The definition of S is recursive, ac-
cording to the ordering induced by w. If immediately after
the topology change, in the new graph G with the order 7
it holds that the MIS invariant still holds for v*, then we
define S = (). (This is motivated by the fact that no node is
influenced by this change.) Otherwise, we denote So = {v*},
and inductively define

Si {u|uwe M, and Si—1 N I (u) # 0}

(1)

U {u|u€ M, and every v € I(u) N M is in U;-;t S}

The set S is then defined as S = UZ Sim Notice that a
node u can be in more than one set 5;, as is the case for
uz2 in the example above, which is in both S; and S4. The
impact of a node u being in more than one S; is that in
order to maintain the MIS invariant, we need to make sure
that we update the state of u after we update that of w, for
any w such that w € I:(u). Instead of updating the state
of u twice, we can simply wait and update it only after the
state of every such w is updated. For this, we denote by
iy = max{i | u € S;} the maximal index ¢ for which v is in

7.

Algorithm 1 A Template for MIS.

Initially, G = (V, E) satisfies the MIS invariant.
On topology change at node v* do:

1. Update state of v™* if required for MIS to hold
2. For i < 1, until S; = 0, do:

3. For every u € S; such that i = i,:

4. Update state of u

5 1141

We formally describe our template in Algorithm By
construction, the updated states after executing Algorithm
satisfy the MIS invariant. In addition, the crucial property
that is satisfied by the above template is that in expectation,
the size of the set S is 1. The remainder of this section is
devoted to proving the following, which is our main technical
result.

THEOREM 1. Er [|S(Goid, Gnew, T)|] < 1.

Outline of the proof.

In order to prove that E[|S|] < 1, instead of analyzing the
set S directly, we analyze the set S’ = S’ (God, Gnew, T, v*),
which is defined via recursion similarly to S with three mod-
ifications: (1) It is always the case that S = {v*} (2) The
graph according to which S’ is defined is Gola in the case
of a node deletion or an edge insertion, and Gpew other-
wise. (3) For any permutation 7’ that is identical to m on

10All states above refer to the time at which the topology
change occurs. The times of actual updates will in fact be
captured by the indexes i of the sets S; to which a node
belongs.
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all pairs not containing v*, S’ (Goa, Gnew, T, v*) remains the
same set. In other words, having knowledge of S’ does not
provide information regarding the location of v* in .

In Lemmal[2] we prove that if 7(v*) # min {7 (u) | u € S’}
then S = ), and otherwise S = S’ (in fact, it would be
enough that S C S’). Then, in Lemma [3] we prove that
for any set P C V, given the event that S’ P, the
probability, over the random choice of 7, that w(v*) =
min {r(u) | u € P} is 1/|P|. This leads to the required re-
sult of Theorem[Il Lemma[3]lwould be trivial if there was no
dependency between m and S’. However, the trap we must
avoid here is that S is defined according to 7, and therefore
when analyzing its size we cannot treat m as a uniformly
random permutation. To see why, suppose we know that
inside S’ \ {v*} we have nodes with large order in 7. Then
the probability that the order of v* in 7 is smaller than all
nodes in S" \ {v*}, is much larger than 1/|S’|, and can in
fact be as large as 1 — o(1). In other words, S’ gives some
information over 7. Nevertheless, we show that for our par-
ticular definition of S’ this information is either about the
order between nodes outside of S’, or about the order be-
tween nodes within S’ \ {v*}. Both types of restrictions on
7 do not affect the probability that v* is the minimal of S".

We now formally prove our result as outlined above.
Throughout we use the notation u € M or u € M. This
applies only to nodes u for which we are guaranteed that
their states remain the same despite the topology change.

LEMMA 2. If 7(v*) # min{n(u) | u € S’} then S = 0.
Otherwise, S C S’.

PROOF. First, assume that w(v*) # min {n(u) | u € S'}.
We show that the MIS invariant still holds after the topol-
ogy change, and so S = (). Consider the node w, for which
m(w) = min{7r(u) | u € S’}. Notice that w ¢ S, because
m(w) < 7w(v*) and by the definition of S it can contain
only nodes whose order in 7 is larger than that of v*. We
claim that w € M. Assume, towards a contradiction, that
w € M. This implies that w has a neighbor v € M such
that 7(u) < m(w). For this node u we must have u ¢ S’ due
to the minimality of w(w). It follows, according to the con-
struction of S’ that w cannot be an element of S’, leading
to a contradiction.

We have that w € M and due to the minimality of w(w),
it must be that w € S7, which implies that w is a neighbor of
v*. But then, when considering S, v* has a neighbor other
than v** (since v* and v™* cannot be neighbors in the graph
defining S’) which is ordered before it according to 7 which
is in M. In the case of an edge insertion or deletion, this
means that v* remains in M despite the topology change
meaning that S = ). In the case of a node deletion, v* was
not in M prior to the change hence S = (). In the case of a
node insertion, v* does not enter M hence again, S = 0.

Next, assume that 7(v*) = min {7 (u) | u € S"}. We show
that either S = @) or S = S’. If there is no need to change the
state of v* as a result of the topological change then Sy = (),
and so S = () and the claim holds. It remains to analyze the
case where So = Sj = {v*}. If u € S] then 7(v*) < m(u)
hence according to its definition u € S1. If u ¢ S1 then u
must have a neighbor w € M with 7(w) < m(u) meaning
that v ¢ S1. We have that S; = S] and similarly S; = S
for all i > 1. We conclude that S’ = S as required. [

The following lemma shows that the probability of having



S = 8" is 1/]S’|, which immediately lead to Theorem [1] as
the only other alternative is S = {).

LEMMA 3. For any set of nodes P C V, it holds that
Pr(r(v*) = min{n(u) |u € P} | S = P and w(v**) < 7(v*)]
1

~ TPl

To prove this lemma we focus on S’. Notice that the
events we considered in the previous lemma depend only
on the ordering implied by 7 and hold for any configura-
tion of states for the nodes that satisfy the MIS invariant.
Roughly speaking, the lemma will follow from the fact that
the event S’ = P does not give any information about
the order implied by 7 between nodes in P and nodes in
V\P. To this end, for every permutation 7 on V', we define
S’ (1) = S'(Gora, Gnew, T, v*) as the set corresponding to S’
under the ordering induced by 7. We denote by Ilp the set
of all permutations 7 for which it holds that S'(r) = P.
We first need to establish the following about permutations
in [Ip: If 7 and o are two permutations on V such that
w|lp = o|p and 7|y\p = o|v\p, then o € IIp if and only if
wellp.

CLAIM 4. Let P CV be a set of nodes, and let m and o be
two permutations such that w|p = o|p and w|y\p = o|v\p.
Assume m € IIp. We have that VAP C V' \ S'(c) and every
u € V\P has the same state according to m and o.

PRrOOF. Let u € V\P. We prove that u € V' \ S'(¢) and
that its state under o is the same as it is under 7 by induction
on the order of nodes in V'\ P according to = (which is equal
to their order according to o).

For the base case, assume that v has the minimal order
in V\P. We claim that u cannot have a neighbor in P.
Assume, towards a contradiction, that u has a neighbor w €
P. Since w € P then it is possible that after the updates, w
will be in M. In particular, w cannot have a neighbor in M,
otherwise w would not be in P, since two nodes in M cannot
be neighbors and v ¢ P. Hence, u must be in M according
to m. In this case there is a node z € Ir(u) N V\P that
is in M according to w. But this cannot occur due to the
minimality of w(u) in V\P. Therefore, u has no neighbors
in P as required.

We have that all of the neighbors of u are in V\P and
that u is the minimal among its neighbors according to .
Since 7|y\p = o|y\p we have that « has the minimal order
among its neighbors according to o. This translates into w
having a state of M under o and in particular, v is not an
element of S’(c), thus proving our base case.

For the induction step, consider a node v € V\P, and
assume the claim holds for every w € V\P N Ir(u). We
consider two cases, depending on whether u has a neighbor
in P or not.

Case 1: u does not have any neighbor in P. If u € M,
then there is a node z € Ir(u) NV\P that is in M according
to m. By the induction hypothesis, z € V\ S’(c) and z € M
also according to ¢. Since 7|y\p = o|y\ p, we have that u is
in M according to o too. Otherwise, if u € M, then every
w € Ir(u) (which is also V\P) is in M according to 7. Any
node w € I,(u) is also in w € I.(u), since it is not in P
and 7|y\p = o|y\p. The induction hypothesis on w gives
that it is also in V' \ §’(o) (otherwise it would be in Sj = P
in contradiction to the assumption of case 1), and its state
according to o is M. Hence, u must be in V' \ S’(c) as well,
and in state M according to o.
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Case 2: Assume u has a neighbor w € P. Since w € P,
it is possible that after the updates, w will be in M. Since
two nodes in M cannot be neighbors and w ¢ P, then u
must be in M according to 7. In this case there is a node
z € I;(u)\P that is in M according to m. By the induction
hypothesis, 2 € V' \ S’(¢) and 2 € M also according to
0. Since 7|y\p = oly\p, then uw is in M and in V' \ §'(0)
according to o too. [

CLAIM 5. Let P CV be a set of nodes, and let w and o be
two permutations such that w|p = o|p and w|y\p = o|v\p-
Assume w € [Ip. We have that P C S'(0).

The proof of Claim [5| appears in the full version [16].
Claims (4| and [5| combined imply that if w|p = o|p and
m|y\p = o|y\p then o € IIp if and only if 7 € ITIp. This is
used in the full version [16] to prove Lemma |3 Lemmas
and [3] immediately lead to Theorem [I] As an immediate
corollary of Theorem [If we get:

COROLLARY 6. A direct distributed implementation of
Algorithm (1| has, in expectation, both a single adjustment
and round, in both the synchronous and asynchronous mod-
els.

4. A CONSTANT BROADCAST IMPLE-
MENTATION

Theorem [I] promises that the expected number of nodes
that need to change their output according to our template
algorithm is 1. However, a direct implementation of the
template in Algorithm [I] in a dynamic distributed setting
may require a much larger broadcast complexity because it
may be the case that a node needs to change its state sev-
eral times until the MIS invariant holds at all nodes. This
is because a node can be in more than a single set S;, as
discussed in the previous section. In such a case, despite
the fact that the expected number of nodes in S is a con-
stant, it may be that the expected number of state changes
is much larger. Specifically, in a naive implementation, the
number of broadcasts may be as large as |S|?. Hence, al-
though E[|S|] = 1, the expected number of broadcasts may
be as large as n.

We thus take a different approach for implementing the
template in Algorithm [1} in the synchronous setting, where
each node waits until it knows the maximal i for which it
belongs to S;, and changes it state only once. This allows
to obtain, for almost all of the possible topology changes
a constant broadcast complexity at the cost of a constant,
rather than single, round complexity.

In order to implement the random permutation m we as-
sume each node v € V has a uniformly random and indepen-
dent ID ¢, € [0,1]. We will maintain the property that each
node has knowledge of its ¢ value and those of its neighbors.
We describe our algorithm in Algorithm This directly
applies to the following topology changes: edge-insertion,
graceful-edge-deletion, abrupt-edge-deletion, graceful-node-
deletion and node-unmuting. An extension of the analysis is
provided in the full version [16] for the case of an abrupt node
deletion, and a slight modification is provided there for the
case of node-insertion. The following summarizes the guar-
antees of our implementation, and is proven in Lemma@ and
in the full version [16].



THEOREM 7. There is a complete fully dynamic dis-
tributed MIS algorithm which requires in expectation a sin-
gle adjustment and O(1) rounds for all topology changes.
For edge insertions and deletions, graceful mode deletion,
and node unmuting, the algorithm requires O(1) broad-
casts, for an abrupt deletion of a mode v* it requires
O (min{log(n),d(v*)}) broadcasts, and for an insertion of
a node v* it requires O(d(v")) broadcasts, in expectation.

In the algorithm a node may be in one of four states: M
for an MIS node, M for a non-MIS node, C for a node that
may need to change from M to M or vice-versa, and R for
a node that is ready to change. We will sometimes abuse
notation and consider a state as the set of nodes which are
in that state. Our goal is to maintain the MIS invariant.

Algorithm 2 MIS Algorithm for node v

1: v € M: If some u € I(v) changes to state C, change
state to C.

2: v € M: If some u € I.(v) changes to state C' and all
other w € I(v) are not in M, change state to C.

3: v € C: If (1) all neighbors v with 7w(v) < 7(u) are not in
state C' and (2) v changed to state C at least 2 rounds
ago, change state to R.

4: v € R: If all u € I.(v) are in states M or M, change
state to M if all u € I:(v) are in M, and change state
to M otherwise.

Any change of state of a node is followed by a broad-
cast of the new state to all of its neighbors. We now define
our implementation as a sequence of state changes. When
a topology change occurs at node v*, if the MIS invariant
still holds then v* does not change its state and algorithm
consists of doing nothing. Otherwise, v™ changes its state to
C.

From states M or M, a node changes to state C' when it
discovers it is in the set S of influenced nodes, as defined
in Equation . From state C, a node v changes to state
R when (1) none of its neighbors u for which w(v) < m(u)
are in state C' and (2) v changed its state to C' at least two
rounds ago. Finally, from state R a node v returns to states
M or M when all of its neighbors u for which 7(u) < 7(v)
are in states M or M. In order to bound the complexity
of the algorithm we first show that every node can change
from state R to either M or M at most once.

LEMMA 8. In Algorithm [4 a node w changes its state
from R to another state at most once.

ProOF. First, note that every u ¢ S never changes its
state. Consider a node u changing its state from R to either
M or M. Since u changes from state R, if u # v* then it
must have a neighbor w € I (u) that was in state C, changed
to state R and then changed to M or M. It follows that v*
must be the first node to change its state from R to M or
M. This event occurs only when all neighbors u of v* are
not in C, which in turn can happen only when all neighbors
of each such u with higher 7 value have changed from C' to
R at least once. But, since no node could have changed its
state from R to another state before v* has done so, we have
that when v™ changes its state from R to another, all u € S
are in state R.

In particular, we have that at the round of the first change
of a node from R to another state, there are no nodes in state
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C. Since a node can only change to state C' due to a neighbor
at state C' we have that any node changing its state from R
to M or M will not change its state again, thus proving our
claim. [

LEMMA 9. For edge-insertion,  graceful-edge-deletion,
abrupt-edge-deletion,  graceful-node-deletion and mnode-
unmuting, Algorithm [4 requires in expectation a single
adjustment, O(1) rounds, and O(1) broadcasts.

PROOF. Since only nodes in S can change their outputs,
the number of adjustments is bounded by |S|, and hence is
1 in expectation, by Theorem [} According to Lemma [§] if
a node changes its state then it does so exactly three times.
First it changes from either M or M to C, then it changes
to R, and finally it changes to either M or M again. Since
only nodes in S change their states and since the round and
broadcast complexities are clearly bounded by the number
of state changes plus 1 (due to the forced waiting round
before changing from C to R), the claim follows. [

The cases of node insertion and abrupt node deletion are
addressed in the full version [16].

S. DISCUSSION

This paper studies computing an MIS in a distributed dy-
namic setting. The strength of our analysis lies in obtaining
that for an algorithm that simulates the sequential random
greedy algorithm, the size of the set of nodes that need to
change their output is in expectation 1. This brings the lo-
cality of the fundamental MIS problem to its most powerful
setting.

We are able to extend our analysis to show that our algo-
rithm can cope with any number k of topology changes that
overlap. The required time for updating the MIS naturally
depends on k, but remains constant if k is constant. For
clarity of presentation, we defer this extension to a future
extended version of this paper.

The expected update time required for our algorithm is
with respect to a random order of nodes. One might argue
that once we have a network in a fixed state then this or-
der is given, and so an interesting question is whether our
algorithm can perform well for this particular given order,
even with possibly relaxing the topology changes to be ran-
dom. However, a simple counter-example shows that this is
not the case: consider a path with the nodes ordered from
left to right (v1,...,vn). The greedy MIS counsists of all v;
for odd i. Any topology change of removing v; causes n — i
nodes to change their state. This means that in expectation
we will suffer a linear number of changes.

Our work sets the ground for more research in this crucial
setting. First, there are many additional problems that can
be addressed in the dynamic distributed setting, especially
in the synchronous case. We believe that our contribution
can find applications in solving many additional dynamic
distributed tasks.

A major open question is whether our techniques can
be adapted to sequential dynamic graph algorithms, which
constitutes a major area of research in the sequential set-
ting [13}]14}/19}|25H27}/31L[33H35L138,[55L 56, 581|59]. A formal
definition and description of typical problems can be found
in, e.g., |18|. Notice that our algorithms are fully dynamic,
which means that they handle both insertions and deletions
(of edges and nodes). Although our template for finding



an MIS can be easily implemented in a sequential dynamic
setting, it would come with a cost of at least O(A) for the
update complexity in a direct implementation. This is be-
cause we would have to access neighbors of the set of nodes
analyzed in Theorem [} Our distributed implementation
avoids this by having them simply not respond since they
do not need to change their output, and hence they do not
contribute to the communication. Nevertheless, we believe
that our approach may be useful for designing an MIS algo-
rithm for the dynamic sequential setting, and leave this for
future research.
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