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Abstract

We introduce a method for “sparsifying” distributed al-
gorithms and exhibit how it leads to improvements that
go past known barriers in two algorithmic settings of
large-scale graph processing: Massively Parallel Com-
putation (MPC), and Local Computation Algorithms
(LCA).

• MPC with Strongly Sublinear Memory: Re-
cently, there has been growing interest in obtaining
MPC algorithms that are faster than their classic
O(log n)-round parallel (PRAM) counterparts for
problems such as Maximal Independent Set (MIS),
Maximal Matching, 2-Approximation of Minimum
Vertex Cover, and (1 + ε)-Approximation of Max-
imum Matching. Currently, all such MPC algo-
rithms require memory of Ω̃(n) per machine: Czu-
maj et al. [STOC’18] were the first to handle Ω̃(n)
memory, running inO((log log n)2) rounds, who im-
proved on the n1+Ω(1) memory requirement of the
O(1)-round algorithm of Lattanzi et al [SPAA’11].
We obtain Õ(

√
log ∆)-round MPC algorithms for

all these four problems that work even when each
machine has strongly sublinear memory, e.g., nα for
any constant α ∈ (0, 1). Here, ∆ denotes the max-
imum degree. These are the first sublogarithmic-
time MPC algorithms for (the general case of) these
problems that break the linear memory barrier.

• LCAs with Query Complexity Below the
Parnas-Ron Paradigm: Currently, the best
known LCA for MIS has query complex-
ity ∆O(log ∆) poly(logn), by Ghaffari [SODA’16],

which improved over the ∆O(log2 ∆) poly(log n)
bound of Levi et al. [Algorithmica’17]. As pointed
out by Rubinfeld, obtaining a query complexity
of poly(∆ log n) remains a central open question.

Ghaffari’s bound almost reaches a ∆Ω( log ∆
log log ∆ ) bar-

rier common to all known MIS LCAs, which sim-
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ulate a distributed algorithm by learning the full
local topology, à la Parnas-Ron [TCS’07]. There
is a barrier because the distributed complexity of

MIS has a lower bound of Ω
(

log ∆
log log ∆

)
, by re-

sults of Kuhn, et al. [JACM’16], which means
this methodology cannot go below query complex-

ity ∆Ω( log ∆
log log ∆ ). We break this barrier and ob-

tain an LCA for MIS that has a query complexity
∆O(log log ∆) poly(log n).

1 Introduction and Related Work

We introduce a notion of locality volume for local dis-
tributed algorithms and we show that, by devising lo-
cal graph algorithms that have a small locality volume
(we refer to these as sparse algorithms), we can obtain
significant improvements in two modern computational
settings: Massively Parallel Computation (MPC) and
Local Computation Algorithms (LCA). Both of these
settings, which are receiving increasingly more atten-
tion, are primarily motivated by the need for processing
large-scale graphs. We hope that the study of sparse lo-
cal algorithms and the methodology set forth here may
also find applications in a wider range of computational
settings, especially for large-scale problems, where “lo-
cal approaches” provide a natural algorithmic line of
attack.

The LOCAL model and the locality radius:
Distributed graph algorithms have been studied exten-
sively since the 1980s. The standard model here is
Linial’s LOCAL model[32]: the communication network
of the distributed system is abstracted as an n-node
graph G = (V,E), with one processor on each node,
which initially knows only its own neighbors. Processors
communicate in synchronous message passing rounds
where per round each processor can send one message
to each of its neighbors. The processors want to solve a
graph problem about their network G — e.g., compute
a coloring of it — and at the end, each processor/node
should know its own part of the output, e.g., its color.

The focus in the study of LOCAL model has been on
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characterizing the round complexity of graph problems.
This not only captures the time needed by a distributed
system to solve the given graph problem, but also
characterizes the locality radius of the problem, in a
mathematical sense: whenever there is an algorithm
with round complexity T , the output of each node v
is a function of the information residing in nodes within
distance T of v, and particularly the topology induced
by the T -hop neighborhood of v. Thus, in this sense,
the problem has locality radius at most T .

The locality volume: We initiate the study of
LOCAL algorithms that, besides having a small locality
radius, also have a small locality volume: in a rough
sense1, we want that each part of the output should
depend on only a few elements of the input, i.e., nodes
and edges (and the randomness used to decide about
them). In particular, the output of a node v should
depend on a small part of the topology within the T -
hop neighborhood of v, instead of all of it. This opens
the road for us to devise improved algorithms in MPC
and LCA. On a high level, this locality volume will
correspond to the memory requirement in the MPC
setting (per node) and also to the query complexity in
the LCA model. To make this point concrete, we next
discuss each of these two settings separately and state
our results.

1.1 Massively Parallel Computation (MPC)
Massively Parallel Computation (MPC) is a theoretical
abstraction which is intended to model recent large-scale
parallel processing settings such as MapReduce[15],
Hadoop[42], Spark[43], and Dryad[24]. This model was
introduced by Karloff et al.[26] and is receiving increas-
ingly more attention recently[26, 20, 28, 9, 4, 10, 22, 1,
40, 23, 14, 6, 7, 19, 21, 12, 8, 11, 5].

The MPC model: The MPC model consists of a
number of machines, each with S bits of memory, who
can communicate with each other in synchronous rounds
on a complete communication network. Per round, each
machine can send O(S) bits to the other machines in
total, and it can also perform some local computation,
ideally at most poly(S). For graph problems, the
number of machines is assumed to be Õ(m/S), where
m denotes the number of edges in the graph, so that
the graph fits the overall memory of the machines. The
main objective is to obtain MPC algorithms that have
a small round complexity as well as a small memory per
machine.

1We note that a precise definition of the locality volume can be

somewhat subtle. Instead of providing a cumbersome and detailed

mathematical definition, we will explain this notion in the context
of a warm up provided in Section 2.

State of the Art: In this paper, our fo-
cus will be on some fundamental graph problems
such as maximal independent set, maximal matching,
(1 + ε)-approximation of maximum matching, and 2-
approximation of minimum vertex cover. For all of these
problems, classic parallel or distributed algorithms im-
ply O(log n) round MPC algorithms without any serious
memory requirement (as long as each node’s edges can
fit in one machine)[25, 34, 2, 33]. Given the power of the
MPC model and also the pressing need for fast process-
ing of large-scale graphs, the objective in MPC is to ob-
tain algorithms that are considerably faster than their
classic parallel counterparts — i.e., strongly subloga-
rithmic time for the above four problems — using a
small memory per machine.

The Linear Memory Barrier: The memory re-
quirement for the above four problems has improved
over time. Currently, sublogarithmic-time algorithms
are known only when the memory S per machine is at
least Θ̃(n). In fact, this itself became possible only re-
cently, due to a breakthrough of Czumaj et al.[14]: they
presented an MPC algorithm with S = Θ(n) and round
complexity O((log log)2) for (1 + ε)-approximation of
maximum matching. Two independent follow up work
provided some improvements: Assadi et al. [7] obtained
an O(log logn) round algorithm for 1 + ε approxima-
tion of maximum matching and O(1)-approximation of
minimum vertex cover; and Ghaffari et al.[19] obtained
O(log logn) round algorithms for maximal independent
set, (1 + ε)-approximation of maximum matching, and
(2 + ε)-approximation of minimum vertex cover. Be-
fore this burst of developments for the setting where
S = Θ̃(n), the best known algorithms were those of
Lattanzi et al.[28] which require memory S = n1+Ω(1)

and have round complexity O(1).
However, all currently known techniques in MPC

algorithms for the above four problems lose their effi-
cacy once the memory per machine becomes (strongly)
sublinear, e.g., S = nα for a constant α ∈ (0, 1). In par-
ticular, as soon as the memory per machine goes below,
say n0.99, the best known round complexity for gen-
eral graphs2 goes back to the O(log n)-round solutions
that follow from the classic distributed/parallel algo-
rithms. This is rather unfortunate because this regime
of memory— e.g., S ≤ n0.99—is especially of interest,
as the graph sizes are becoming larger and larger.

2We are aware of one exception for special graphs: For trees, a

recent work of Brandt et al. [12] obtains an O((log logn)3)-round

MIS algorithm in the MPC model with memory nα per machine
for any constant α ∈ (0, 1). More recently, they [13] generalized

this to any graph of arboricity poly(logn) and improved the round

complexity to O((log logn)2) and this extension also works for
maximal matching.
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Our Result in MPC: By devising sparse LOCAL
algorithms (which have small locality volume), we ob-
tain MPC algorithms that break this barrier. In par-
ticular, these algorithm use a strongly sublinear mem-
ory per machine and still run considerably faster than
O(log n):

Theorem 1.1. There are MPC algorithms, with mem-
ory per machine of S = nα for any constant α ∈ (0, 1),
that, with probability at least 1−1/n10, solve the follow-
ing four problems in O(

√
log ∆·log log ∆+

√
log logn) =

Õ(
√

log ∆) rounds in any n-node graph of maximum de-
gree at most ∆: Maximal Independent Set, Maximal
Matching, (1 + ε)-Approximation of Maximum Match-
ing for any constant ε > 0, and 2-Approximation of
Minimum Vertex Cover.

We comment that in the case of maximal matching and
2-approximation of minimum vertex cover, previously
there was no known sublogarithmic-time algorithm even
for a memory of S = Θ̃(n).

The Connection to Sparse Local Distributed
Algorithms. We obtain Theorem 1.1 by devising
LOCAL algorithms for these problems that have both
small locality radius ofO(log ∆) and also a small locality

volume of ∆O(
√

log ∆), in a rough sense. There are also
some smaller clean up steps, which we discard from our
discussion for now. More concretely, this algorithm will
be such that running every span of R = Θ(α

√
log ∆)

rounds of it has locality volume at most ∆α/10 for a
desirably small constant α ∈ (0, 1). This ∆α/10 vol-
ume fits well within the memory of one machine. In
fact, if we uniformly spread the nodes among the ma-
chines, each machine has enough memory to store ∆α/10

bits for each of the nodes that it holds (some care is
needed when the graph is highly irregular). Using a sim-
ple and by now well-known graph exponentiation idea
(see, e.g., [29, 18, 12, 5, 8]), we can make each node v
learns this ∆α/10 local volume that determines its be-
havior for the R rounds, within O(logR) MPC rounds,
after which it can locally emulate its behavior for R
rounds. Hence, once we have a sparse distributed algo-
rithm where the locality volume fits the memory of a
machine, it is easy to compress the number of rounds
exponentially. In particular, we can “compress” each
phase ofR = Θ(

√
log ∆) rounds of the LOCAL algorithm

into O(logR) = O(log log ∆) rounds of MPC. Hence, by
doing this for different phases, one after the other, we
get an Õ(

√
log ∆) round MPC algorithm.

As a side remark, we note that some of the ideas
that we use for our sparse local algorithm are similar to
those that were used before in [18]. A particular idea
that we borrow from [18] allows us to effectively stall
nodes in “dense” neighborhoods in the MIS algorithm

of [17], without losing its guarantees. See Section 3.2.
The work of [18] obtains a faster MIS algorithm in
CONGESTED-CLIQUE model of distributed computing,
in which the n nodes of the network can communicate
with each other in an all-to-all manner, where per round
each two nodes can exchange O(log n) bits. There,
the nodes have no memory constraints. Recently, the
round complexity of MIS in that model was improved
to O(log logn) [19], using a very different method.

1.2 Local Computation Algorithms (LCA) Lo-
cal Computation Algorithms (LCA) is a recent theoret-
ical model that was introduced by Rubinfeld et al.[41]
and Alon et al.[3], also motivated by the necessity to
process massive graphs. For general introductions, we
refer the reader to a comprehensive and recent survery
of Levi and Medina[30]. The LCA model is known to
be closely related to many other computational models,
cf. Levi et al. [31, Section 1], and is stipulated to be
useful also in settings such as cloud computing. The
high-level goal in this model is to be able to determine
each single part of the output in a graph problem in con-
siderably sublinear time, by reading only a few places
in the graph.

Concretely, an LCA has query access to a graph
G = (V,E) where each query can ask either for the
degree of a node v ∈ V or for the identifier of the i-th
neighbor of a node v. In this work, we assume that a
query to a node returns the identifiers of all its neighbors
and point out that this only adds a ∆ factor to the query
complexity. It also has access to a string of npoly log n
random bits3. An LCA should be able to determine each
single part of the output. For instance, in the Maximal
Independent Set (MIS) problem, when asked about a
node v ∈ V , the LCA should determine whether v is in
the MIS or not, using a small number of queries. All the
answers of the algorithm for different vertices v should
be consistent with one MIS.

A central problem in the study of LCAs is that of
computing an MIS. This centrality is in part due to
fact that many other local problems can be solved using
MIS algorithms. This includes maximal matching, 2-
approximation of minimum vertex cover, (∆+1)-vertex-
coloring of graphs of max degree at most ∆, (2∆ − 1)-
edge coloring, and (1 + ε)-approximation of maximum
matching [34, 33, 16].

State of the Art on LCAs for MIS: Much of the
known MIS LCAs are efficient only for graphs of small
degrees. In general, the query complexity of known al-
gorithms is a function of two parameters, the maximum

3The number of bits can reduced to poly logn using techniques
from [3, 31]; we defer the details to the full version of this paper.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1638



degree ∆ and the number of nodes in the graph n. Ru-
binfeld et al. [41] and Alon et al. [3] presented algorithms

with query complexity 2O(∆ log2 ∆) log n. Reingold and
Vardi [39] gave an algorithm with query complexity
2O(∆) log n · log logn. Even et al. [16] significantly im-
proved the dependency on n at the cost of increasing the
∆-dependency; concretely they provide a deterministic
LCA with query complexity 2O(∆2 log2 ∆) log∗ n.

All the above algorithms have an exponential (or
higher) dependency on ∆. Thus, these algorithms lose
efficacy in graphs with moderately super-constant de-
grees, e.g., even for ∆ = Ω(logn). There are two
known LCAs whose complexity has a better depen-
dency on ∆. Levi et al.[31] gave the first such algo-

rithm with query complexity 2O(log3 ∆) log3 n and con-
sequently, Ghaffari[17] gave an algorithm with query

complexity 2O(log2 ∆) log3 n. A natural question which
remains open4 is this:

“Is there an MIS LCA with query complexity
poly(∆ log n)?”

A Natural Query-Complexity Barrier?
The ∆O(log ∆) poly(log n) complexity of Ghaffari’s
algorithm[17] comes close to a natural barrier for
known techniques. The current MIS LCAs, including
those of [41, 3, 31, 17], are all implicitly or explicitly
based on transforming LOCAL distributed algorithms
to LCAs. This is a connection that was first observed
by Parnas and Ron[37]. In particular, given a T -round
LOCAL algorithm, we can emulate it in the LCA model
with query complexity ∆O(T ): upon being queried on
a node v, we read the whole subgraph within T -hops
of v, which has ∆O(T ) vertices, and then compute the
output v by emulating the LOCAL algorithm. Now, it
is known by a lower bound of Kuhn et al.[27] that any
LOCAL algorithm for MIS needs round complexity at

least Ω
(

min
{

log ∆
log log ∆ ,

√
logn

log logn

})
. Hence, unless we

go away from the Parnas-Ron methodology, we cannot
go below query complexity ∆Ω(log ∆/ log log ∆).

Our Result in LCA: By devising a sparse LOCAL
algorithms (one that has a small locality volume),
we obtain an LCA that goes significantly below the
aforementioned barrier. Concretely, we show that:

Theorem 1.2. There is an LCA that, with probability
1 − 1/n10, computes an MIS with query complexity
∆O(log log ∆) poly(log n).

4This question was alluded to by Rubinfeld in a TCS+ talk,

which can be found here: https://www.youtube.com/watch?v=

R8J61RYaaDw.

While this still does not reach the milestone of
poly(∆ log n) query complexity, it makes a significant
step in that direction. In particular, in terms of de-
pendency on ∆, it exhibits an exponential improvement
in the exponent, compared to the ∆O(log ∆) poly(log n)-
query LCA of Ghaffari[17].

The Connection to Sparse Local Distributed
Algorithms. We obtain Theorem 1.2 by devising a
LOCAL MIS algorithm that has a small locality vol-
ume of ∆O(log log ∆) poly(log n), as well as a locality
radius O(log ∆). While the lower bound of Kuhn et
al.[27] shows that the locality radius should be at least

O
(

log ∆
log log ∆

)
, our algorithm shows that we do not need

to depend on all of the information within this ra-
dius, and a much smaller volume suffices. When the
LCA is asked whether a given node v is in the MIS
or not, it carefully finds its way through this maze
of the O(log ∆)-neighborhood and gathers the relevant
∆O(log log ∆) poly(logn) local volume, using a propor-
tional number of queries. Then, it can emulate the
LOCAL process and determine the output of v.

Roadmap In Section 2, as a warm up, we present a
sparse distributed algorithm for constant approximation
of maximum matching, and we explain how, thanks to
its small locality volume, it leads to improvements in
MPC and LCA settings. In Section 3, we present our
main sparse MIS algorithm and discuss its implications
in the MPC and LCA settings. In particular, this
section provides the proof of Section 1.1. In Section 4,
we explain how we improve the query complexity of
the LCA presented in Section 3 further, to prove
Theorem 1.2.

2 Warm Up: Matching Approximation

In this section, we recall a basic distributed algorithm
for constant-approximation of maximum matching, and
we explain how, by sparsifying it, we can obtain im-
provements in Massively Parallel Computation (MPC)
and centralized Local Computation Algorithms (LCA).

Concretely, the basic distributed algorithm has
a (near-optimal) round complexity of O(log ∆). By
sparsifying it, we obtain an algorithm with locality
radius O(log ∆) and locality volume ∆O(

√
log ∆), which

then leads to the following results: (I) an Õ(
√

log ∆)-
round MPC algorithm with strongly sublinear memory
per-machine, i.e., nα bits for any arbitrary constant
α ∈ (0, 1), and (II) an LCA algorithm with query

complexity ∆O(
√

log ∆). While being warm ups, these
are already considerable improvements over the state
of the art: The former is the first sublogarithmic-time
MPC algorithm that can handle sublinear memory. The
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latter LCA has a query-complexity that goes below that
of the Parnas-Ron paradigm [37], i.e., collecting the full
topology in the T -hop neighborhood where T is the
distributed complexity of the problem.

Next, we start with explaining the basic distributed
algorithm for approximating maximum matching and
then we present the sparsified version of it. Then, we
discuss how we simulate this sparsified version in the
MPC and LCA settings.

Basic Distributed Algorithm: The algorithm
has log ∆ iterations indexed by i ∈ {0, 1, 2, . . . , log ∆ −
1}. We maintain the invariant that in iteration i, the
maximum degree is at most di−1 = ∆/2i. The ith

iteration works as follows: we mark each edge incident
on any node of degree at least di = ∆/2i+1 with
probability pi = 2i/(4∆). We note that this probability
is set such that each node of degree at least di = ∆/2i+1

has at least a constant probability of having an isolated
marked edge — i.e., a marked edge that has no other
marked edge adjacent to it. Then, we put all isolated
marked edges into the matching and we remove their
endpoints from the graph. We also remove from the
graph all vertices of degree at least di = ∆/2i+1.

On an intuitive level, in iteration i, we remove a
number of vertices linear in the number of vertices of
degree at least di−1/2 and expect a constant fraction
of these to be matched. Hence, overall, the algorithm
gives a constant approximation of maximum matching.
The formal analysis will be provided for our sparsified
variant, which we discuss below. We also comment that
this algorithm can be viewed as a simple variant of the
algorithm used by Parnas and Ron paradigm [37] and
it is also close to some algorithms in [36, 14, 19].

Sparse Distributed Algorithm: We now ex-
plain how to sparsify this basic algorithm and make sure
that it has a small locality volume. We break the algo-
rithm into 2

√
log ∆ phases; each with R =

√
log ∆/2

iterations. We simulate each phase, by running a dif-
ferent O(R)-round distributed algorithm on a sparsi-
fied graph H ⊆ G. The graph H has maximum degree

Õ
(

2
√

log ∆/2
)

and moreover, it can be identified at the

beginning of the phase in one round.
Let us focus on the first phase; the other phases

are similar. For this phase, we generate H randomly,
as follows: For each iteration i ∈ {1, 2, . . . , R} to be
simulated, generate a randomly sampled subgraph Hi

by including each edge of the original graph G with
probability p′i = min{Kpi, 1} = min{K · 2i/(4∆), 1}
for some K = Θ(log ∆). The samplings for different
iterations i are independent, and are all generated at
the same time. The sparsified subgraph H is the union
of all of these subgraphs, i.e., H = ∪i∈{1,2,...,R}Hi.

To simulate iteration i of the basic algorithm by

running another algorithm on the sparsified graph H,
for each iteration i ∈ {1, 2, . . . , R}, we do two things:
(1) To mark edges of iteration i, we subsample each
sampled edge of Hi (those whose both endpoints are
still present) with probability pi/p

′
i. Then, as before,

isolated marked edges are added to the output match-
ing, and their vertices are removed from Hi. (2) Instead
of removing vertices of high degree in the original graph
G (which we cannot identify exactly as we do not want
to communicate in G), we remove all vertices whose
remaining degree in Hi exceeds di · p′i = K/8. This
completes the description for one phase. After a phase
on the sparsified graph, we use one round of communi-
cation on G to remove all vertices whose degree in the
remaining graph exceeds dR = ∆/2R+1. Then, we pro-
ceed to the next phase. Other phases work similarly,
essentially as if the maximum degree has decreased by
a factor of 2R = 2

√
log ∆/2.

Lemma 2.1. (A) For each node v, the degree of v in H

is at most 2
√

log ∆/2 · O(log ∆), with probability at least
1 − 1/∆10. (B) After iteration i of the simulation, the
remaining degree of each node in graph G is at most
2di = ∆/2i, with probability at least 1 − 1/∆10. (C)
In iteration i of the simulation, if we remove a set S
of vertices (for having a high-degree in Hi or becom-
ing matched), then we have Θ(|S|) matched edges in
this iteration, with probability at least 1−exp(−Θ(|S|)).
Hence, the algorithm computes a constant approxima-
tion of maximum matching, with high probability (in the
matching size).

Proof. (A) Since p′i = K · 2i/(4∆), the expected degree
of v in Hi is at most 2i · O(log ∆). Thus the expected

degree in H is at most 2
√

log ∆/2 · O(log ∆). By a
Chernoff bound, the probability that v has more than
2
√

log ∆/2 ·O(log ∆) edges in H is no more than 1/∆10.
(B) For any node whose degree is at least ∆/2i in

graph G in the end of simulation of iteration r = i− 1,
we expect to have at least ∆/2i · 2i/(4∆) · K = K/4
sampled edges in Hi (to vertices that are not removed
after simulating iterations 1 to i − 1). Hence, with
probability at least 1 − 1/∆10, any such vertex has at
least K/8 sampled edges in Hi and thus gets removed
in iteration i.

(C) The set S of vertices that get removed in
iteration i is composed of two parts: the set of vertices
that are incident on isolated marked edges, which are
matched, and the set S′ of vertices that have a degree
of at least K/4 in Hi. To show that the matching
size is Θ(|S|), it suffices to show that the matching
size is Ω(|S′|). Now, each edge of Hi gets marked
with probability pi/p

′
i. Therefore, the probability for

each vertex v ∈ S′ (which has at least K/4 edges
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in Hi) to be incident on a marked edge is at least
a constant. Now, by property (B), at the beginning
of iteration i, each node u has degree at most 2di in
graph G, with probability at least 1 − 1/∆10, which
means that in the sampled graph Hi, node u has
degree at most 4dip

′
i = K/2, with probability at least

1 − 2/∆10. Therefore, with probability at least a
constant, the marked edge incident on v is isolated
and has no adjacent marked edge. That is, with
constant probability, vertex v is matched. This implies
that we expect to have at least Θ(|S′|) matched edges
in this iteration. By an application of McDiarmid’s
inequality (similar to [19, Lemma 4.1]), we can also
prove some concentration around this expectation, and
show that, with probability at least 1− exp(−Θ(|S′|)),
the matching size is at least Θ(|S′|).

The Locality Volume of the Sparsified Graph.
To simulate one phase, we need to identify the re-
lated sparsified graph, which can be done in one
round and has degree 2O(

√
log ∆). Then, we run a

Θ(
√

log ∆) round local process on this graph. Hence,
each node’s behavior in one phase depends on at most

∆ ·
(

2O(
√

log ∆)
)Θ(
√

log ∆)

= ∆O(1) nodes/edges. This

is the locality volume for one phase. Since we have
Θ(
√

log ∆) phases, the overall behavior of each node

during this algorithm depends on at most ∆Θ(
√

log ∆)

other nodes/edges. Hence, although we have a process
with locality radius T = Θ(log ∆), the locality volume

is much smaller than ∆T and is just ∆Θ(
√

log ∆).
Simulation in the MPC Model: Before describ-

ing the simulation, we comment that for this warm-up,
and to avoid technicalities, we make two simplifying as-
sumption: (1) We assume that the edges of each node fit
within one machine (thus, ∆ ≤ nα). This assumption
can be avoided, basically with some change of param-
eters, as is done for our main algorithms presented in
the next section. (2) We assume that we have room
for at least Õ(

√
∆) bits per node, e.g., by working un-

der the assumption that all vertices have degrees be-
tween [∆1/2,∆], which means that the number of ma-

chines M = Ω̃
(
n
√

∆
nα

)
and thus, n/M ≥ Õ

(
nα√

∆

)
. This

latter assumption can be removed by working through
log log ∆ successive iterations of polynomially decreas-
ing degree classes [∆1/2,∆], [∆1/4,∆1/2], [∆1/8,∆1/4],
etc.

We simulate R =
√

log ∆/2 iterations of one phase
in the sparsified algorithm in O(log log ∆) rounds of the
MPC model. For that, we make each node v learn its
R-hop neighborhood in H, as follows: we have logR
MPC rounds, where at the end of round i, each node
should know its neighborhood in H2i . In round i + 1,

node v sends the names of all its neighbors in H2i to
all of these neighbors. Given the degree of H, this is
at most (2

√
log ∆/2)2i ≤ (2

√
log ∆/2)R = ∆1/4 neighbors.

Hence, at the end of round i + 1, each node knows
its neighbors in H2i+1

. After dlogRe rounds, each
node knows its R-neighborhood in H. Notice that each
machine needs to gather at most Õ(∆1/2) bits for each
of the n/M = Õ( n

α
√

∆
) nodes that it wants to simulate.

Hence, each machine can gather this information for all
of its nodes and that would fit within its memory. At
this point, the machine can locally simulate the behavior
of each of its nodes v in R rounds of the algorithm and
learn whether v is matched or not and whether it is
removed or not. We can then use one round of the
MPC model to remove all vertices whose degree has not
dropped below ∆/2R, at which point we can proceed to
the next phase.

We should remark about one small subtlety in this
simulation: We want that the collected neighborhood
includes the related random values, so that the sim-
ulation (and particularly subsampling) performed after
collecting the local topology is consistent in various ver-
tices that simulate the algorithm. For that, we do as fol-
lows: for each edge in G, when sampling it for inclusion
in Hi, we draw a uniformly random number in [0, 1]. If
this random number exceeds p′i, the edge is included in
Hi. Then, we also include this random number in the
information of that edge. When simulating iteration i,
where we want to subsample and mark edges of Hi with
probaility pi/p

′
i, we call each edge of Hi marked if its

random number exceeds the threshold of pi.
Simulation in the LCA Model: We start with

discussing the simulation of the first phase. We can
create an oracle that simulates the R =

√
log ∆/2

iterations of this phase for one node v in the LCA model,
as follows: We will basically gather R-hop topology
of v in the sampled graph H. This is a topology
of size at most ∆1/2 as argued above. For that, we
need to build H, which we will do iteratively: We
first determine all edges of H that are incident on
v. That will take ∆ queries, to read all neighboring
edges, and to sample them according to the probabilistic
construction of H. Then, we recurse among the at
most O(log2 ∆) · 2

√
log ∆/2 neighbors of v in H, and

build their neighborhoods. We then continue on their
neighbors, and so on, up to distance R. Building edges
of each node takes ∆ queries, to determine its edges
(and sample the respective random variables), and we

then continue on at most O(log2 ∆)·2
√

log ∆/2 neighbors.
Since we do this for R-hop neighborhood, we need at
most ∆ ·(O(log2 ∆) ·2

√
log ∆/2)R ≤ ∆3/2 queries. Hence,

this oracle can simulate one node’s behavior in one
phase of the sparsified distributed algorithm using ∆3/2
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queries. Then, the process for simulating the second
phase is similar, except that to simulate each node’s
behavior in the second phase, we first need to call the
oracle of the first phase on this node and its neighbors
to know this node’s status at the end of that period (the
neighbors are needed so that we can remove the node if
its degree did not drop below ∆/2R). Hence, the oracle
of the second phase works in ∆5/2 queries to the first
oracle, which is at most ∆5 queries to the base graph.
Similarly, we can simulate all the log ∆ iterations in
2
√

log ∆ phases, where the oracle of each phase makes
∆5/2 calls to the oracle of the previous phase, and at
the very base, the calls are to the original graph. Since
we have 2

√
log ∆ phases, the overall query complexity

for simulating each node’s behavior in the full run of the
algorithm is ∆O(

√
log ∆).

3 Maximal Independent Set (MIS) and
Implications

Here, we first review a distributed MIS algorithm of
Ghaffari [17] and then present a sparsification for it. We
then explain how this sparsification leads to improved
MPC and LCA algorithms.

3.1 Reviewing Ghaffari’s MIS Algorithm The
MIS algorithm of [17] is basically repeating a simple
O(1)-round probabilistic dynamic, as presented below.
Running this dynamic for O(log n) iterations computes
a Maximal Independent Set of the graph, with probabil-
ity at least 1−1/poly(n). If we run the dynamic for just
O(log ∆) iterations instead, with probability at least
1−1/poly(n), we obtain a Nearly-Maximal Independent
Set, in the following sense: with high probability, the
number of remaining nodes is at most n/ poly(∆), and
each remaining component has size O(∆4 log n). These
two properties allow us to complete the computation
of MIS, simply by computing an MIS among remaining
nodes, much easier.

Intuitive Discussion of How This Algorithm
Works: Informally, the dynamic adjustments in the
probabilities pt(v) aim to create a negative-feedback
loop so that we achieve the following property: for each
node v, there are many iterations t in which either (I)
pt(v) = Ω(1) and dt(v) = O(1), or (II) dt(v) = Ω(1)
and a constant fraction of it is contributed by neighbors
w for which dt(w) = O(1). These are good iterations
because it is easy to see that in any such iteration, node
v gets removed with at least a constant probability.
Ghaffari’s analysis [17] shows that if we run for Ω(log ∆)
iterations, each node v spends a constant fraction of
the time in such good iterations (with a deterministic
guarantee). Hence, if we run for O(log n) rounds, with

high probability, we have computed an MIS. Running
for O(log ∆) rounds leaves each node with probability
at most 1/poly(∆) and this can be seen to imply that we
have computed a Nearly-Maximal Independent Set [17],
in the sense explained above. After that, it is easier to
add some more vertices to this set and ensure that we
have an MIS.

3.2 Sparsifying Ghaffari’s MIS Algorithm
Intuitive Discussions About Sparsification 5:

We are mainly interested in running O(log ∆) rounds
of the above algorithm; after that we can complete
the computation from a near-maximal IS to a maximal
IS easier. We will break the algorithm into phases
and perform a sparsification for each phase separately.
For one phase, which has R rounds, we would like to
devise a much sparser graph H such that by running a
distributed algorithm on H for Θ(R) rounds, we can
simulate R iterations of Ghaffari’s algorithm on the
base graph G. In our case, we will be able to do this
for R = O(

√
log ∆). Thus, each O(

√
log ∆) iterations

can be performed on a much sparser graph and we
just need to “stitch together” O(

√
log ∆) of these, by

communications in the base graph. We next discuss the
challenges in sparsifying one phase and our ideas for
going around these challenges.

We discuss how we deal with sparsification for the
first round of iterations, i.e., the round of updating
probabilities pt(v) based on the neighbors. We use a
similar idea for the sparsification needed for the second
rounds of the iterations, where we perform a marking
to determine the vertices that are added to MIS.

Let us first examine just one round of the dynamic.
One obstacle is the dynamic update of the probabilities
pt(v), which depend on all the neighbors. That is, pt(v)
is updated based on the summation of the probabilities
pt(u) of all neighbors u ∈ N(v). It seems like even if we
ignore just one or a few of the neighbors, and we do not
include them in H, then the update of the probability
might be incorrect, especially if those ignored neighbors
u have a large value pu(t). However, all that we need
to do is to test whether dt−1(v) =

∑
u∈N(v) pt−1(u) ≥ 2

or not. Thus, a natural idea for sparsification is to use
random sampling, while neighbors of larger pt(u) have
more importance. In particular, if we sample each node
u with probability pt(u) and compare the number of
sampled vertices with 2, we have a constant-probability
random tester for checking the condition dt−1(v) =∑
u∈N(v) pt−1(u) ≥ 2, up to a small constant factor.

5We note that the discussions here are quite informal and
imprecise. We still provide this intuitive explanation with the

hope that it delivers the main idea behind our approach, and why

we do certain potentially strange-looking things.
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Algorithm 1 Ghaffari’s Local MIS algorithm for node v:

Set p0(v) = 1/2.
for iteration t = 1, 2, . . . until node v is removed do

Round 1: Set

pt(v) =

{
pt−1(v)/2, if dt−1(v) =

∑
u∈N(v) pt−1(u) ≥ 2,

min{2pt−1(v), 1/2}, otherwise.

Round 2: Node v marks itself w.p. pt(v).
If v is the only marked node in its neighborhood N(v), then v joins the MIS.
If v joined the MIS, v is removed from the graph along with its neighbors.

That is, if we are above the threshold by a constant
factor, the test detects that we are above the threshold
with at least a positive constant probability, and if we
are below the threshold by a constant factor, the test
detects that we are below the threshold with at least a
positive constant probability. We can run this random
tester several times, all in parallel, to amplify the
success probability. For each node v, the sampled set of
neighbors would have size at most poly(log ∆) ·dt−1(v),
with probability 1 − 1/poly(∆), thus opening the way
for the creation of the sparser graphH mentioned above,
especially for nodes v whose dt−1(v) is small.

The above does not seem so useful on its own,
because we still have to receive from each neighbor
u whether it is sampled or not, and that depends on
pt(u) in that iteration which is not known in advance.
But, thanks to the fact that the changes in pt(u) are
somewhat smooth, we can go much further than one
round, as we informally sketch next. Suppose that at
time t, which is the beginning of a phase, we want to
build a sparse graph H that includes any neighbor that
may be sampled and thus might impact the estimation
of dt′(u) in any iteration t′ ∈ [t, t+R]. For each round
t′ ∈ [t, t + R], if we include each node with probability
2Rpt(v), the included set would be an oversampling of
the set that will be sampled at iteration t′ ∈ [t, t + R],
i.e., it will include the latter. This is because pt′(v) ≤
2Rpt(v). The fact that at time t we can predict a small
superset of all vertices that will be sampled in iterations
[t, t′] allows us to build a graph H where each node
v has at most Õ(2Rdt(v)) neighbors, and suffices for
simulating the next R rounds. We soon discuss how to
deal with vertices for which dt(v) is large.

The above randomly sampled graph H is good

for vertices v such that dt(v) is small, e.g., 2Õ(R).
But for vertices that have a larger dt(v), this graph
would include many neighbors, which is not desired.
Fortunately, for any such vertex v for which dt(v) ≥ 23R,
we have a different nice property, which helps us predict
their behavior for the next R rounds. More correctly,

this property enables us to safely gamble on a prediction
of their behavior.

Let us explain that: Under normal circumstances
where for each neighbor pt(u) decreases by a 2 factor per
round, during the nextR round, dt(v) would decrease by
at most a 2R factor. Hence, if we start with dt(v) ≥ 23R,
throughout all iterations t′ ∈ [t, t + R] in the phase,
dt′(v) is quite large. In such cases, it is clear that
v should keep reducing its pt(v) and also that any
time that it marks itself, it gets blocked by a marked
neighbor, with a significant probability. Hence, in such
an situation, the behavior of v is predictable for the
next R rounds. Of course, it is possible that many of
the neighbors of v drop out during the next R rounds
and because of that we suddenly have dt′(v) ≤ 2R.
Fortunately, this is enough progress in the negative-
feedback dynamic around v, which allows us to modify
the analysis of [17] and show the following property. The
algorithm works even with the following update: if at
the beginning of the phase we have dt(v) ≥ 23R, for all
rounds of this phase, we can update pt′+1(v) = pt′(v)/2
without checking dt′(v) (in a very predictable manner).
In this case, we say that we are stalling node v. In a
sense, this postpones the attempts of v to join MIS for
the next R rounds. On an intuitive level, this is fine
because sudden drops that dt(v) ≥ 23R and dt′(v) ≤ 2
for some t′ ∈ [t, t + R] cannot happen too frequently.
We note that an idea similar to this was used before
in [18] to obtain an algorithm for MIS algorithm in the
CONGESTED-CLIQUE model of distributed computing.

Finally, we note that in the above, we discussed our
idea for randomly testing whether dt′(v) ≥ 2 or not,
via randomly sampling vertices. Essentially the same
idea can be used to create a superset of marked nodes,
such that it has only a few nodes around each node v
whose dt(v) is small and it is guaranteed to include all
neighbors of v that are marked in round t′.

Sparsified Variant of Ghaffari’s Local MIS
Algorithm. The precise algorithm can be found in Al-
gorithm 2. Let us summarize the changes to Ghaffari’s

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1643



algorithm: As mentioned above, we break the algorithm
into phases, each made of R = α

√
log ∆/10 iterations,

and we do the sparsification mentioned for each itera-
tion. Recall that α ∈ (0, 1) is the constant so that each
machine has memory at least nα. At the beginning of
the phase, we decide whether to stall each node v or not,
based on the value of dt(v) at that point. Furthermore,
instead of updating pt(v) by reading the summation of
all neighbors, we update it based on an estimation that
derived from O(log ∆) parallel repetitions of sampling
each neighbor u with probability pt(u).

Analysis for the Sparsified Algorithm: We
provide an analysis which shows that the above spar-
sified algorithm provides guarantees similar to those of
the algorithm of [17]. The formal statement is provided
below, and the proof appears in Section 5.

Theorem 3.1. For each node v, during T = c(log ∆)
iterations for a sufficiently large constant c, with prob-
ability at least 1/∆C , either node v or a neighbor of v
is added to the MIS. This guarantee holds independent
of the randomness outside the 2-hop neighborhood of v.
Furthermore, let B be the set of nodes remaining after
T rounds. With probability at least 1 − 1/n10, we have
the following:

1. Each connected component of the graph induced by
B has O(log∆ n ·∆4) nodes.

2. |B| ≤ n
∆10 .

3. If ∆ > nα/4, then the set B is empty.

3.3 Constructing a Sparse Graph to Simulate
a Phase of the Sparsified Algorithm We now
describe how we build the sparse graph H at the
beginning of the phase, such that we can run O(R)
rounds of the sparsified algorithm on just this graph.
The role of the sparse graph H will be similar to the
one in the warm up provided in Section 2.

Fixing All the Randomness in the Beginning:
We first draw the randomness that each node will
use, at the very beginning of the execution. Every
node v draws O(log3 ∆) random bits such that there
are c1 log2 ∆ bits of fresh randomness for each of the
c log ∆ iterations of the MIS algorithm, for a desirably
large constant c1 > c. For iteration t, let r̄t(v) =
(r1
t−1, . . . , r

k
t−1, r

m
t ) denote a vector of k + 1 uniformly

chosen random numbers, with c1 log ∆-bit precision6,
from the interval [0, 1]. Given this, once we know pt(v)

6In the extreme case, pt(v) of node v halves in every iteration.

Since p0(v) = 1/2, pt(v) is a power of two in every iteration, and

the number of iterations is bounded by O(log ∆), the number of
random bits needed per iteration is also O(log ∆).

for some iteration t, we can derive the outcome of the
random marking for iteration t by checking whether
rmt (v) < pt(v). Similarly, a node is sampled in the
j-th repetition if, in r̄t(v) = (r1

t−1, . . . , r
k
t−1, r

m
t ), we

have rjt−1 < pt−1(v). We note that once we have fixed
each node’s randomness as above, the behavior of the
algorithm is fully deterministic.

We denote an interval of iterations from t to t′ by
[t, t′] and refer to it as a phase if t is the beginning and
t′ is the end of the same phase in Algorithm 2. We next
explain how we construct the sparsified graph Ht,t′ for
phase [t, t′], after introducing some helper definitions.

Definitions. We use the following terminology in
the construction of our sparse graph.

1. Node u is relevant if rji−1(u) < pt−1(u) ·2α·
√

log ∆/10

for some iteration i ∈ [t, t′] and any index 1 ≤ j ≤ k
or if rmi (u) < pt(u) · 2α·

√
log ∆/10.

2. We say that node u is light, if dt−1(u) <

2α·
√

log ∆/5+1. Otherwise, u is heavy.

3. We say that u is good if the following inequality
holds for all i ∈ [t, t′] and otherwise, it is bad.

d̂i−1(u) ≤ 2α·(3/10)·
√

log ∆+2 = 4 · 2α·(3/10)·
√

log ∆ .

Notice that if u is not relevant, it will not get marked
nor sampled in phase [t, t′]. Hence, we do not need
to include u in our sparse graph. For a light node
u, we have that di(u) < 2α·(

√
log ∆/5+

√
log ∆/10)+1 =

2α·(3/10)·
√

log ∆+1 for all iterations i ∈ [t, t′].
Constructing the Sparse Graph Ht,t′ . We first

determine the vertices of Ht,t′ . All relevant light nodes
that are good are added to Ht,t′ . For a relevant heavy
node u, we create d virtual copies, where d is the number
of relevant light nodes that are good and connected to u
in the original graph. All these copies are added to Ht,t′ .
We next determine the edges of Ht,t′ . If two light nodes
u and w are connected in the original graph, we add the
edge {u,w} to Ht,t′ . Each copy of a relevant heavy node
w gets an edge to exactly one of the light nodes that w is
connected to in the original graph. Hence, every heavy
node in Ht,t′ has degree one and is connected to a light
node. Finally, we note that some vertices carry extra
information when added to Ht,t′ , which is maintained as
a label on the vertex. In particular, every node u in Ht,t′

is labeled with its random bits r̄i(u) for all iterations i
in [t, t′]. This label can be thought of as a bit string
appended to the identifier of the node.

Observation 1. Given the pt(v) values and the ran-
dom bits r̄t(v) for each node v, the graph Ht,t′ can be
constructed from the 1-hop neighborhood of each node.
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Algorithm 2 Local MIS algorithm for node v:

Set p0 = 1/2.
for phase s = 0, 1, . . . until node v is removed do

for iteration i = 1, 2, . . . , α ·
√

log ∆/10 of phase s do . nα is the memory per machine
Let t = s · α ·

√
log ∆/10 + i and let k = 12 · C log ∆. . C is some large constant

Perform k repetitions of sampling, where in each repetition v is sampled w.p. pt−1(v).
Let b(v) be the binary vector of length k, where b j is its j-th element.
Set b j equal to 1 iff v is sampled in repetition j.
Let N̂(v) ⊆ N(v) be the set of neighbors sampled at least once.
For j = 1, . . . , k, set

d̂ j(v) =
∑

u∈N̂(v)

b j(v) .

Set estimate d̂t−1(v) as the median of {d̂1, d̂2, . . . , d̂k}.
If i = 1 and d̂t−1(v) ≥ 2α·

√
log ∆/5, then stall for this phase.

Round 1: Set

pt(v) =

{
pt−1(v)/2, if d̂t−1(v) ≥ 2 or if v is stalling

min{2pt−1(v), 1/2}, otherwise.

if Node v is not stalling then
Round 2: Node v marks itself w.p. pt(v).
If v is the only marked node in N(v), then v joins the MIS.
If v joined the MIS, v is removed from the graph along with its neighbors.

Lemma 3.1. Let R = α ·
√

log ∆/10 and C ≥ 1 a de-
sirably large constant. A light node v is bad in phase

[t, t′] with probability7 at most e−22R � 1/∆C . Further-
more, the event that a node is bad is independent of the
randomness of nodes outside of its 2-hop neighborhood.

Proof. By definition, dt(v) < 2α·
√

log ∆/5+1 = 22R+1.
Since the dt(v) value increases by at most a factor of
two in every iteration, we get that di(v) < 22R+1 · 2R =
23R+1 for any iteration i ∈ [t, t′]. The expected value

E[d̂i(v)] = µ is therefore bounded from above by 23R+1

and thus, by a Chernoff bound, we have

P
(
d̂i(v) > 2µ

)
= P

(
d̂i(v) > 23R+2

)
< e−23R+1·(1/3)

< e−23R−1

= e−2α·(3/10)
√

log ∆−1

.

Node v is bad if there is at least one iteration i such
that d̂i(v) > 2α·(3/10)

√
log ∆+2 = 23R+2. By a union

bound over the iterations and the sampling repetitions,
for a sufficiently large ∆, we get that the probability of
node v being bad is at most

R ·O(log ∆) · e−23R−1

< e−22R

� 1/∆C .

7notice that to get a probability of 1/∆C , we can insert any
R ≥ log log ∆.

We get the independence by observing that 23R+1 is
an upper bound for E[d̂i(v)] regardless of the random
choices of its neighbors. Thus, the bad event only
depends on the randomness of the neighbors of v in the
corresponding iteration.

Lemma 3.2. Let R = α ·
√

log ∆/10 be the length of
phase [t, t′]. The maximum degree of Ht,t′ is O

(
25R
)
.

Furthermore, the number of nodes in the R-hop neigh-
borhood of any node node v ∈ Ht,t′ is bounded from

above by O
(
25R
)R

< ∆α2/8 � nα.

Proof. By definition, all (copies of) heavy nodes in Ht,t′

have degree exactly 1. Since we only picked good light
nodes u, we have that d̂i(u) ≤ 4·23x for all i ∈ [t, t′]. Let
C be the constant from Algorithm 2. Thus, summing
over all repetitions of the sampling, the number of
sampled and marked neighbors of u is bounded from
above by 12·C log ∆· d̂i(u) for any iteration i. Summing
up over all iterations, for a sufficiently large ∆, we can
bound the number of neighbors of u by

O

(
1

α
·
√

log ∆

)
·O(log ∆) · d̂i(u) = O

(
25R
)

= O
(

2α·
√

log ∆/2
)
.

For the second claim, the number of neighbors in the
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R-hop neighborhood of any node v is at most

O
(
25R
)R

= O
(

2α·
√

log ∆/2
)α·√log ∆/10

= O
(

2α
2·(1/20) log ∆

)
� ∆α2/8 .

Lemma 3.3. Consider a phase [t, t′] of length R =
α·
√

log ∆/10. If node v learns its R-hop neighborhood in
Ht,t′ , it can simulate its behavior in iterations in [t, t′].
In particular, node v learns pt′(v) and whether it joined
the MIS or not.

Proof. We argue by induction on the iteration index
that the behavior of v can be derived solely based on
the nodes in Ht,t′ . Consider first the base case, i.e.,
iteration t. From the labels of its neighbors, node v can
determine pt−1(u) for each neighbor u. Combined with
the random bits r̄t(u) = (r1

t−1, . . . , r
k
t−1, r

m
t ), node v can

determine d̂t−1(v). If d̂t−1(v) > 22R, node v knows that
it is stalling and hence, pt′(v) = 2−R ·pt−1(v) and it will
not join the MIS.

Thus, we focus on non-stalling nodes for the rest of
the proof. By construction of Ht,t′ , if u is sampled or
marked in iteration t, it belongs to Ht,t′ . Otherwise,
the node u has no impact on the behavior of v. From
the pt−1(u) values of its sampled neighbors, node v can

derive d̂t−1(v) and further pt(v). Once v knows pt(v),
it can derive whether it gets marked or not. If any
neighbor of v is marked, then v cannot join the MIS.
Conversely, if no neighbor is marked and v is, then v
joins the MIS.

Assume then that the claim holds for iteration
t ≤ i < t′. Due to the construction of Ht,t′ v can
learn the random bits by looking at the labels of its
neighbors. By the induction hypothesis, in iteration i,
node v knows the pi−1(u) values of all of its neighbors
and whether they joined the MIS or not. In case v
or a neighbor joined the MIS, we are done. With the
knowledge of the random bits r̄i(u) and the pi−1(u)
values of its neighbors, it can simulate all the repetitions
of the sampling process in iteration i. Thereby, v can
derive whether d̂i−1(v) ≥ 2 and set pi(v) accordingly.
Thus, v can determine whether it is marked or not and
simulate round 2 of iteration i.

3.4 Simulation in the Low Memory MPC
Model In this section, we explain how by simulating
the above algorithm, we can prove Theorem 1.1 for the
MIS problem. The extensions to the other problems fol-
low by simple adjustments and known methods and are
discussed in Section 3.6.

Remark 1. In case the maximum degree ∆ > nα, one
needs to pay attention to how the model takes care of

distributing the input. One explicit way is to split the
high degree nodes into many copies and distribute the
copies among many machines. For the communication
between the copies, one can imagine a (virtual) balanced
tree of depth at most 1/α rooted at one of the copies.
Through this tree, the copies can exchange information
in O(1/α) communication rounds. Another subtlety is
that without care, communicating through this tree might
overload the local memories of the machines. In our
algorithms, the messages are very simple and hence,
do not pose a problem. For the sake of simplicity, the
write-up in this section assumes that all edges of each
node fit within one machine’s memory and in particular,
∆ < nα. The algorithm can be extended easily to higher
values of ∆ by doing a O(1/α) rounds of communication
atop the virtual tree mentioned above.

Our low memory MPC algorithm performs
log log ∆ + 1 steps, where in step i = 1, 2, . . . we ex-
ecute Algorithm 2 on the subgraph induced by nodes
with degree at least ∆i = ∆2−i . This ensures that after
step i, all vertices of degree at least ∆2−i are removed,
and therefore, the maximum degree in the remaining
graph is at most ∆2−i . Let ni be the number of nodes
in the graph in step i.

Lemma 3.4. Let v be a node in the graph remaining
in step i. Consider phase s of Algorithm 2, which
was run in step i, and let Hs be the corresponding
sparsified graph. Each node v in Hs can learn its
(α ·
√

2 log ∆i/10)-hop neighborhood in Hs in the low
memory MPC model in O(log log ∆i) communication
rounds. In particular, the (α ·

√
2 log ∆i/10)-hop neigh-

borhood of a node in Hs in step i fits into the memory
of a single machine and the neighborhoods of all nodes
in Hs fit into the total memory.

Proof. Consider the following well-known and simple
graph exponentiation procedure [29, 18]. In every com-
munication round, each node u informs its neighbors of
the nodes contained in N(u). Then, every node can add
the new nodes it learned about in its neighborhood by
adding a virtual edge to each such node. This way, in
round j of the procedure, node v will be informed about
all nodes and edges in its 2j-hop neighborhood. Thus,
every node learns its α · (

√
2 log ∆i/10)-hop neighbor-

hood after at most O(log log ∆i) rounds.
Due to the design of the algorithm, we have that

the minimum degree of a node v considered in step i
is at least ∆i and hence, the total memory we have is
at least O(ni ·∆i). Furthermore, the maximum degree
is at most ∆2

i . By Lemma 3.2, this implies that the(
α ·
√

log ∆2
i /10

)
-hop neighborhood of any single node

in Hs contains at most ∆
2α2/8
i = ∆

α2/4
i .
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Hence, we need to store at most ∆
α2/4
i virtual

edges per node per phase. Since ∆
α2/4
i � nα, the

neighborhood together with the virtual edges clearly
fit into the memory of a single machine. Combined
with the labels, the total memory required is then

ni · ∆α2/4
i · O(log3 ∆) = O

(
ni ·∆α2/2

i

)
. For the next

phase, we can re-use the same memory. We conclude
that the total memory suffices to store a copy of the
(α ·
√

2 log ∆i/10)-hop neighborhood of every node in
any phase in step i.

Theorem 3.2. There is an algorithm that, with prob-
ability 1 − 1/n10, computes a Maximal Independent
Set in the low memory MPC model that requires
O(
√

log ∆ log log ∆+
√

log logn) communication rounds.

Proof. By Lemma 3.4, we can simulate one phase of
Algorithm 2 in O(log log ∆) communication rounds.
Hence, we can simulate all the O(1/α)

√
log ∆ phases

in O((1/α)
√

log ∆ log log ∆) rounds. By Theorem 3.1
and Lemma 3.1, we get that with probability at most
1/∆C−2, a node survives, i.e., neither it nor at least
one of its neighbors is part of the MIS after executing
our simulation. Hence, we can apply Theorem 3.1 and
obtain that the connected components induced by the
surviving nodes are of size at most O(∆4 · log n) and
the number of the surviving nodes is at most n∗ =
n/∆10. By Lemma 3.4, we do not break our memory
restrictions.

We apply the graph exponentiation procedure once
more and simulate the deterministic algorithm for
MIS designed for these small components by Ghaf-
fari [17]. This simulation requires each node to know

its 2O(
√

log logn)-hop neighborhood. Notice that since
the components are of size O(∆4 · log n), we require
n∗ · O((∆4 · log n)2) = Θ̃(n) total memory to store
these neighborhoods8. Hence, we obtain a runtime of
O(
√

log logn) for the deterministic part.
Putting the randomized and the deterministic part

together and summing up over all steps results in a

8Notice that if ∆4 > nα, i.e., a component does not fit into

the memory of a single machine, we have by Theorem 3.1 that no
node survives the Θ(log ∆) rounds of Algorithm 2.

runtime of

log log ∆+1∑
i=1

O

(
1

α

√
log ∆i · log log ∆i

)
+O

(
log 2

√
log logn

)
= O

(
log log ∆+1∑

i=1

√
2−i log ∆ · log log 2−i∆

)
+O

(√
log logn

)
= O

(√
log ∆ · log log ∆ +

√
log logn

)
.

3.5 Simulation in the LCA Model Similarly to
our MPC algorithm, our LCA algorithm for MIS sim-
ulates phases of Algorithm 2 by creating the sparsi-
fied graph Hi for every phase i. For the purposes of
our LCA, we can set the length of each phase to be√

log ∆/10, i.e., omit the α factor. It is convenient to
think about simulating a phase as creating an oracle
that, for node v, answers the following query: What is
the state of node v in the end of phase i = [t, t′]? In
particular, did v join the MIS and what is pt′(v).

Oracle O0(v). From its 1-hop neighborhood, node
v can derive whether u belongs to H0 and whether it is
stalling or not in phase 0. Similarly, v can deduce its
1-hop neighborhood in H0 by querying every node in its
neighborhood in the original graph. Then, iteratively,
v can learn its (x + 1)-hop neighborhood in H0 by
querying all the neighbors of the nodes within the x-
hop neighborhood in H0. In particular, we do not query
the neighbors of nodes that are not part of the x-hop
neighborhood of v in H0. Once the (

√
log ∆/10)-hop

neighborhood is learned, we can simulate the behavior
of v in phase 0 by Lemma 3.3.

Oracle Oi(v). Consider phase i > 0 with iterations
[t, t′]. First, we query Oi−1(v) and each neighbor u of v,
we query the state of u from Oi−1(u). In particular, we
learn pt−1(v), pt−1(u) for all neighbors, the random9

bits r̄t(u), and whether v or any neighbor u joined
the MIS. From this information, we are able to derive
d̂t−1(v) and whether v belongs to Hi. Then, we use
the same procedure to figure out which neighbors of v
belong to Hi. Once we have learned the 1-hop neighbors
of v inHi, we iteratively learn their neighbors inHi until
we have learned the (

√
log ∆/10)-hop neighborhood of

v in Hi. Once the (
√

log ∆/10)-hop neighborhood is
learned, we simulate phase i on the graph Hi.

9Notice that labeling the graph explicitly with the random bits

r̄t(u) for an LCA is not necessary due to the shared randomness,
i.e., the random bits are availably by definition.
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Let us denote the query complexity of simulating
phase i by Q(i).

Lemma 3.5. The oracle Oi(v) for phase i for node v
requires at most Q(i− 1) ·∆9/8 queries.

Proof. According to the design of Oi(v), we use the
oracle Oi−1(u) to query each neighbor u of every node
in the (

√
log ∆/10)-hop neighborhood of v in Hi−1. By

Lemma 3.2, we get that the number of nodes whose
states are queried from Oi−1 is at most ∆1/8 ·∆ = ∆9/8,
i.e., Q(i) = Q(i− 1) ·∆9/8.

Theorem 3.3. There is an LCA that, with probability
1 − 1/n10, computes an MIS with query complexity

∆O(
√

log ∆) · log n.

Proof. Let x be the number of phases of Algorithm 2
and hence x = O(

√
log ∆). Using Lemma 3.5 can bound

the total query complexity of our simulation from above
by

Q(x− 1) = ∆9/8 ·Q(x− 2)

= ∆9/8 ·∆9/8 ·Q(x− 3) = . . . =

T/x−1∏
i=0

∆9/8

= ∆O(
√

log ∆) .

After running these phases, by Theorem 3.1, the
remaining components are of size at most O(∆4 · log n).
Thus, we can complete our LCA for node v by learning
all nodes in the corresponding component resulting in
a total query complexity of Q(x − 1) · ∆O(1) · log n =

∆O(
√

log ∆) · log n.

3.6 Implications on Other Problems
Maximal Matching and 2-Approximation of

Minimum Vertex Cover: It is well-known that a
maximal matching algorithm immediately implies a 2-
approximation of minimum vertex cover, simply by
outputting all endpoints of the maximal matching.
Next, we discuss how to adjust the MIS algorithm so
that it solves maximal matching. Our idea follows the
standard approach of running an MIS algorithm on the
line graph of the input graph. In the LCA setting, we
can do this without any extra effort.

However, for the MPC setting, we need some more
care with the memory restriction: We make each node
simulate the behavior of its edges, without creating the
line graph explicitly. At first glance, it might seem that
we have a problem with the local memory constraints
per machine, since every edge needs to learn about
up to ∆ elements in its neighborhood, which amounts
to ∆2 per node and exceeds our memory limitation.

To overcome this issue, we make two observations:
(I) We can simulate a round of sampling on the line
graph without breaking the memory limit, since this
only requires counting the number of sampled neighbors
per edge. This can be done by exchanging one small
message per edge, since an edge has endpoints in at
most 2 machines. Hence, we can derive for each edge in
the beginning of a phase, whether it is part of a graph
Hs or not. (II) Once we focus on the sparsified graph,
by Lemma 3.2, the maximum degree of Hs is at most
∆α2/8. Hence, each node can simulate all of its edges
in Hs, including learning the information about their
Θ(
√

log ∆)-neighborhood in Hs.
A (1 +ε)-approximation of Maximum Match-

ing: By a method of Mcgregor [35], one can compute
a (1 + ε) approximation of maximum matching, for any
constant ε > 0, by a constant number of calls to a max-
imal matching algorithm on suitably chosen subgraphs
(though the dependency on ε is super exponential).
These subgraphs are in fact easy to identify, and can be
done in O(1) rounds of the LOCAL distributed model.
Therefore, we can use the same method to extend our
maximal matching algorithm to a (1+ε)-approximation
of maximum matching, in both MPC and LCA, with-
out any asymptotic increase in our complexities. We
note that a similar idea was used by [14, 7, 19] to trans-
form constant approximation of maximum matching to
a (1 + ε)-approximation.

4 An Improved LCA for MIS

In this section, we modify Algorithm 2 in a way that
admits a much more efficient simulation in the LCA
model. Next, we explain the structure of our modified
algorithm in a recursive manner.

4.1 Recursive Splitting to Subphases On the
highest level, we can think of T = Θ(log ∆) iterations
in Algorithm 2 as a (very long) phase s0 of length T . In
our modified algorithm, any node u in phase s0 that has
d̂0(u) > 22T is stalling10 and thus, will not be marked
and halves its pt(u) value in every iteration t of s0. For
the non-stalling nodes, we split the phase of T iterations
into two subphases of T/2 iterations. In the subphases
of length T/2, we adjust the threshold for stalling to

d̂ > 22T/2 = 2T . After recursively splitting the (sub-
)phases i times, we reach subphases of length R = T/2i.

In subphases of length R, node u is stalling if d̂(u) > 22R

in the first iteration of the phase. The recursive splitting

10The highest level phase is degenerate in the sense that d̂0 is

potentially never larger than 22T = poly ∆. However, for the sake

of presentation, it is convenient to start from the largest possible
phase.
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to subphases is continued until we hit a subphase length
of 2 log log ∆ < R ≤ 4 log log ∆.

4.2 Bound on the Number of Iterations The
estimation of dt−1(v) through d̂t−1(v) and updating of
pt(v) in iteration t is done exactly as in Algorithm 2.
We refer to the modified version of Algorithm 2 to as
the recursive MIS algorithm. To bound the number
of iterations that the recursive MIS algorithm needs to
perform, we can use an analysis that is almost exactly
the same as for Algorithm 2. The formal statement is
presented below and a proof sketch appears in the end
of this section. The number of iterations T executed by
the recursive MIS algorithm is equal to the length of the
highest level phase s0.

Theorem 4.1. Consider the recursive MIS algorithm
described above. For each node v, during T = c log ∆
iterations for a sufficiently large constant c, with prob-
ability at least 1 − 1/∆98, either node v or a neighbor
of v is added to the MIS. This guarantee holds indepen-
dent of the randomness outside the 2-hop neighborhood
of v. Furthermore, let B be the set of nodes remaining
after T rounds. Each connected component of the graph
induced by B has O(log∆ n ·∆4) nodes.

4.3 Sparsification Intuitively, splitting the execu-
tion of the algorithm into very short phases leads to
simulating iterations on very sparse subgraphs. In these
sparse graphs, in terms of query complexity, it is cheap
to simulate the iterations of the short phases.

Definitions. Here, we use terminology very sim-
ilar to Section 3.3. For iteration t, let r̄t(v) =
(r1
t−1, . . . , r

k
t−1, r

m
t ) denote a vector of k+ 1 = Θ(log ∆)

uniformly chosen random numbers, with c log ∆-bit
precision, from the interval [0, 1]. Now, we can de-
rive the outcome of the random marking for itera-
tion t by checking whether rmt (v) < pt(v) and simi-
larly, a node is sampled in the j-th repetition if, in
r̄t(v) = (r1

t−1, . . . , r
k
t−1, r

m
t ), we have rjt−1 < pt−1(v).

We slightly adjust the definitions of node types to in-
corporate the varying lengths of (sub-)phases.

For a phase [t, t′] of length R, we have the following
definitions:

1. We say that node u is relevant if rji−1(u) < pt−1(u)·
2R for some iteration i ∈ [t, t′] and any index
1 ≤ j ≤ k or if rmi (u) < pt(u) · 2R.

2. We say that node u is light, if dt−1(u) < 22R+1.
Otherwise, u is heavy.

3. We say that u is good if d̂i−1(u) ≤ 23R+2 for all
i ∈ [t, t′] and otherwise, it is bad.

Notice that if u is not relevant, it will not get marked
nor sampled in phase [t, t′]. Hence, we do not need to
include u in our sparse graph. For a light node u, we
have that di−1(u) < 22R+R+1 = 23R+1 for all iterations
i ∈ [t, t′].

Constructing the Sparse Graph Ht,t′ . We first
determine the vertices of Ht,t′ . All relevant light nodes
that are good are added to Ht,t′ . For a relevant heavy
node u, we create d virtual copies, where d is the number
of relevant light nodes that are good and connected to u
in the original graph. All these copies are added to Ht,t′ .
We next determine the edges of Ht,t′ . If two light nodes
u and w are connected in the original graph, we add the
edge {u,w} to Ht,t′ . Each copy of a relevant heavy node
w gets an edge to exactly one of the light nodes that w is
connected to in the original graph. Hence, every heavy
node in Ht,t′ has degree one and is connected to a light
node. Finally, we note that some vertices carry extra
information when added to Ht,t′ , which is maintained
as a label on the vertex. In particular, every node u
in Ht,t′ is labeled pt−1(u) and the random bits r̄(v).
Notice that in case of an LCA, the shared randomness
is available to all nodes even without an explicit labeling
of Ht,t′ .

The next two lemmas follow from setting R ≥
2 log log ∆ in the proof of Lemma 3.1 and fixing the
phase length to R in the proof of Lemma 3.3.

Lemma 4.1. A light node v is bad in phase [t, t′] of

length R with probability at most e−22R � 1/∆100. Fur-
thermore, the event that a node is bad is independent of
the randomness of nodes outside of its 2-hop neighbor-
hood.

Lemma 4.2. Consider a phase [t, t′] of length R. If
node v learns its R-hop neighborhood in Ht,t′ , it can
simulate its behavior in iterations in [t, t′]. In particu-
lar, node v learns pt′(v) and whether it joined the MIS
or not.

Lemma 4.3. Consider a phase of length R ≥
2 log log ∆. The maximum degree of Ht,t′ is at most
25R. Furthermore, the number of nodes in the R-hop
neighborhood of any node node v ∈ Ht,t′ is bounded from

above by 25R2

.

Proof. By definition, all (copies of) heavy nodes in Ht,t′

have degree exactly 1. Since we only picked good
light nodes u, we have that d̂i−1(u) ≤ 4 · 23R for
all i ∈ [t, t′]. Thus, summing over all repetitions of
the sampling and all iterations in [t, t′], for sufficiently
large ∆, the number of sampled and marked neighbors
of u is bounded from above by C log ∆ · 4 · 23R �
23R · log3 ∆ ≤ 25R for any iteration i. The number
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of neighbors in the R-hop neighborhood of any node v

is at most
(
25R
)R

= 25R2

.

A key observation in our LCA algorithm is that the
behavior of a node in the two subphases of a phase11

s = [t, t′] only depends on the graph Hs. Hence, it is
convenient to think that an oracle simulating phase s
of length > 4 log log ∆ answers queries to the adjacency
lists of Ht,t′/2 and Ht′/2+1,t′ . In a sense, the oracle for
phase s creates the graphs Ht,t′/2 and Ht′/2+1,t′ .

Oracle Ot′(v,Ht,t′) for a Phase of Length R.
If R ≤ 4 log log ∆, then Ot′(v,Ht,t′) learns the R-hop
neighborhood of v in Ht,t′ and simulates R iterations
of phase [t, t′]. Hence, by Lemma 4.2, we obtain pt′(v)
and the knowledge of whether v joined the MIS or not.
If R > 4 log log ∆, let s1 and s2 be the subphases of
length R/2 of phase [t, t′]. Then, the oracle Ot′(v,Ht,t′)
answers adjacency queries to Hs1 and Hs2 . For a query
to Hs1 , we examine the neighbors of v and since Ht,t′

is labeled with the pt−1(u) values, we can derive the

estimate d̂t−1(u) for all neighbors u of v from the 2-hop
neighborhood of v. If u is good and light in phase s1,
then u ∈ Hs1 . For queries to Hs2 , we query every 2-hop
neighbor u of v in Ht,t′ with the oracle Ot′/2(u,Hs1).
Once we obtained pt′/2(u) for each 2-hop neighbor u,

we can derive d̂t′/2(w) for each 1-hop neighbor w and
hence, can decide whether w ∈ Hs2 or not.

Shorthand Notation. We denote the number of
queries needed to simulate a phase s = [t, t′] of length
R by Q(R). In other words, Q(R) denotes the number
of queries required by the oracle Ot′(v,Ht,t′).

Lemma 4.4. If R ≤ 4 log log ∆, then Q(R) =

2O(log2 log ∆). Otherwise, the query complexity Q(R) =
O
(
Q(R/2)2 · 210R

)
.

Proof. Consider the phase [t, 2t′] of length R. Let
us first examine the case where R ≤ 4 log log ∆. By
Lemma 4.3, any node v has at most 2O(log2 log ∆) nodes
in its (4 log log ∆)-hop neighborhood in Ht,t′ . Hence,

Q(R) = 2O(log2 log ∆).
Consider then the case where R > 4 log log ∆.

When simulating phase [t, 2t′], we can read the pt−1(v)
values from the node labels in Ht,2t′ . To obtain the
adjacency list of v in Ht,t′ , we need to query all
neighbors of v in Ht,2t′ once. Thus, by Lemma 4.3,
we need at most Q(R/2) · 25R queries to simulate phase
[t, t′] and to obtain pt′(v).

For every adjacency query to a node u in phase
[t′ + 1, 2t′], we need to query Ot′(w,Ht,t′) for each
neighbor w of u. For each of theQ(R/2) queries of phase

11Assume w.l.o.g. for simplicity that phase lengths are multi-
ples of 2.

[t′+ 1, 2t′], we need an adjacency query to Ot′(w,Ht,t′).
Hence, the query complexity of simulating phase [t, 2t′]
for node v is bounded by

Q(R) = Q(R/2)·
(
25R ·

(
25R ·Q(R/2)

))
= Q(R/2)2·210R .

Theorem 4.2. There is an LCA that, with probability
1 − 1/n10, computes an MIS with query complexity
∆O(log log ∆) poly(log n).

Proof. Let T = O(log ∆). By Lemma 4.4, we can write
the query complexity of our simulation in the LCA
model as

Q(T ) = O
(
210T ·Q(T/2) ·Q(T/2)

)
= O

(
210T ·Q(T/2)2

)
≤ O

(
210T+10·2·T/2 ·Q(T/4)4

)
= O

(
210·2T ·Q(T/4)4

)
= O

(
210·3T ·Q(T/8)8

)
= . . .

≤ 210(
∑log T
i=1 T) ·Q(4 log log ∆)O(T/ log T )

≤ 2O(log ∆ log log ∆) ·
(

2O(log2 log ∆)
)O(log ∆/ log log ∆)

= ∆O(log log ∆) ·∆O(log log ∆) = ∆O(log log ∆) .

By Lemma 4.1 and by Lemma 4.1 have that, with
probability at most 1/∆98, a node survives, i.e., is not
part of the MIS nor has a neighbor in the MIS after ex-
ecuting O(log ∆) iterations. From Theorem 4.1 we have
that the surviving nodes form connected components of
size at most ∆O(1) · log n. Hence, we can complete our
LCA for node v by querying all the nodes in the cor-
responding component, resulting in a total query com-
plexity of ∆O(log log ∆) ·∆O(1) ·log n = ∆O(log log ∆) ·log n.

Proof. [Proof Sketch of Theorem 4.1] There is a small
difference in the proof of this theorem as compared to
the proof of Theorem 3.1. Due to the different stalling
behavior, we need to slightly adjust the details of the
proof of Lemma 5.2. Consider the count h that counts
the number of iterations t in which node v is either
stalling or dt(v) > 0.4. For the case where v is stalling
in phase [t, t′] of length R and di(v) ≤ 0.4 for some
iteration i ∈ [t, t′], we need to adjust our argument
as follows. In the beginning of the phase, we have
by Lemma 5.1 that dt−1(v) ≥ d̂t−1(v)/4 > 22R−2.
Since dt(v) at most doubles in every iteration, we have
dt′(v) ≤ 0.4 · 2R < 22R−2 · 2−R−1 < dt−1(v) · 2−R−1.
Hence, amortizing over the R iterations of the phase,
we have that di(v) < di−1(v) · 0.65 for each iteration i
of the phase. The rest of the proof is analogous to the
one of Theorem 3.1.
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5 Proof of Theorem 3.1

We denote the set of nodes that are stalling in iteration
t by SHt.

Following that, we set

d′t(v) =
∑

u∈N(v), dt(u)≤20, u6∈SHt

pt(u) .

We define golden rounds for node v.

1. Golden round type 1: pt(v) = 1/2, v 6∈ SHt, and
dt(v) ≤ 20

2. Golden round type 2: dt(v) ≥ 0.2 and d′t(v) ≥
0.1 · dt(v).

Observation 2. In each golden round, node v gets
removed with a constant probability.

Lemma 5.1. Let C be the constant in Algorithm 2,
where k = 12C log ∆ is the number of repetitions
of sampling. With probability at least 1 − 1/∆C , in
iteration t

1. if dt(v) > 20, we have d̂t ≥ 2

2. d̂t(v) ≤ 4dt(v)

3. if dt(v) < 0.4, we have d̂t < 2

Proof. Suppose that dt(v) > 20. Then, for each j ∈
{1, 2, . . . , k}, we have that E[d̂j ] = dt(v) > 20. By a
Chernoff bound, we get that

P
[
d̂j < 2

]
= P

[
d̂j <

(
1− 9

10

)
· E
[
d̂j
]]

≤ e−0.81·10 = e−8.1 � 1

8
.

In other words, the expected number of entries in d̂
that are larger than 2 is less than k/8. Notice that

if the median of d̂ is less than 2, then more than half
of its entries are smaller than 2. Thus, by applying a
Chernoff bound, the probability that d̂t ≤ 2 is at most
e(9·k/8)/3 < ek/2 < 1/∆C . This proves the first claim.

For the second claim, Markov’s inequality gives that

P
[
d̂ j > 4dt(v)

]
< 1/4. In other words, the expected

number of entries in d̂ that are greater than dt(v)
is at most k/4. By applying a Chernoff bound, we

get that the probability that d̂t ≥ 4dt(v) is at most
e(1/3)·(k/4) < 1/∆C .

The third claim follows from the second claim
because if dt(v) < 0.4, we have d̂t(v) ≤ 4dt(v) < 1.6 < 2
with probability at least 1− 1/∆C .

Lemma 5.2. For each node v, during T = c · log ∆
rounds, where c is a sufficiently large constant, with
probability at least 1−1/∆C−2, there are at least 0.05 ·T
golden iterations.

Proof. Let us denote the count of golden iterations of
type 1 and 2 by g1 and g2, respectively. Let h denote the
number of iterations in which dt(v) > 0.4 or v ∈ SHt.
Next, we argue that either g1 or g2 must be at least
0.05T .

Small g2 implies small h. Assume g2 < 0.05T .
We first analyze iterations in which v ∈ SHt and
dt(v) ≤ 0.4. Consider the iteration i ≤ t in which v
started stalling such that t < i+α ·

√
log ∆/10 = t′. By

definition of stalling we have d̂i−1(v) ≥ 2α·
√

log ∆/5. By

Lemma 5.1, di−1(v) ≥ 2α·
√

log ∆/5−2 with probability at
least 1− 1/∆C . Thus, in iteration t′, we have

dt′(v) ≤ 0.4 · 2α·
√

log ∆/10+1

≤ 0.4 ·
(

2α·
√

log ∆/5−2 · 2α·(−
√

log ∆/10)+3
)

< di−1(v) · 2α·(−
√

log ∆/10)+3 .

Hence, amortizing over the t′ − i = α ·
√

log ∆/10
iterations, we have dj+1(v) ≤ 0.65 · dj(v) for all i ≤ j <
t′. For the sake of the analysis, we may thus assume that
for all iterations t in which v ∈ SHt and dt(v) ≤ 0.4, we
have dt+1(v) ≤ dt(v) · 0.65.

Consider then an iteration t in which d′t(v) <
0.1dt(v). In this case, 0.9dt(v) is contributed by neigh-
bors u of v that are either stalling or have dt(u) > 20.
We argue that in this case, with probability 1− 1/∆98,
we will have that dt+1(v) ≤ (0.45 + 0.2) · dt(v) =
0.65dt(v). The reason is as follows: We can use
Lemma 5.1 and the union bound over all neighbors
of v and all iterations to obtain that, with probabil-
ity 1 − 1/∆C−2, all such “heavy” neighbors of v in all
O(log ∆) iterations correctly detect that they are heavy
(or stalling) and thus, their pt(u) value drops by a factor
of 1/2 in each such iteration. For the other neighbors
that contribute the remaining 0.1dt(v), the worst case is
that they all double their pt value. Hence, we get that
dt+1(v) ≤ (0.45 + 0.2) · dt(v) = 0.65dt(v).

The above implies that the dt(v) drops by a factor
0.65 in every iteration in h that is not a g2 iteration.
Now in every g2 iteration, dt(v) can increase by at most
a 2 factor. This implies that h ≤ 3g2 +4 log ∆. Suppose
towards contradiction that h > 3g2 + 4 log ∆. Then we
would have

dt(v) < (0.65)
h−g2 · 2g2 · ∆

2
<

(
1

2

)2 log ∆

· ∆

2
< 0.4 .

That is, we cannot have dt(v) remain above 0.4 for more
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than 3g2 + 4 log ∆ iterations. Since we have assumed
g2 < 0.05T , we conclude that h < 0.2T .

Small h implies large g1. Suppose that h < 0.2T .
Then, with probability 1 − 1/∆C−1, in at most 0.2T
iterations, we have pt(v) decrease by a 1/2 factor.
Besides these, in every other iteration, we have pt(v) =
min{2pt(v), 1/2}. Since we always have pt(v) ≤ 1/2,
among these, at most 0.2T iterations can be iterations
where pt(v) increases by a 2 factor. Hence, there
are at least (1 − 2 · 0.2)T = 0.6T iterations in which
pt(v) = 1/2. By assumption, the number of rounds in
which pt(v) = 1/2 and dt(v) > 0.4 or v ∈ SHt can be at
most h. Therefore, we have at least (0.6 − 0.2)T =
0.4T iterations in which pt(v) = 1/2, dt(v) ≤ 0.4,
and v 6∈ SHt. By definition, any such iteration is a
golden iteration of type 1. Hence, we conclude that
g1 ≥ 0.4T > 0.05T .

Proof. [Proof of Theorem 3.1] Suppose that ∆4 > nα

and set C = 60/α. We have by Lemma 5.2 that
the probability of a node remaining after executing the
Algorithm 2 for Θ((1/α) · log ∆) iterations is at most
1/∆60/α−2 < 1/∆50/α < 1/n12. Now, by using a union
bound over all nodes, we get that the set B is empty
with probability at least 1/n10.

Suppose then that ∆4 ≤ nα. We have that
the expected number of surviving nodes is at most
n/∆60/α < n/∆60. Since the probability of remaining
in the graph is independent of the randomness outside
its 2-hop neighborhood, the event of node remaining
can depend on at most ∆5 other nodes. By using
a standard variant of a Chernoff bound for bounded
dependencies [38], we get that with probability at least
1− 1/n10, the number of nodes in B is at most n/∆10.
The bound for the size of the components follows
directly from previous work [17, Lemma 4.2].

Acknowledgment: Over the past year, we have
discussed the notion of locality volume with several re-
searchers, including Sebastian Brandt, Juho Hirvonen,
Fabian Kuhn, Yannic Maus, and Jukka Suomela, and
we thank all of them. These discussions were typically
in terms of characterizing general trade-offs between lo-
cality radius and locality volume for arbitrary locally
checkable problems (though, not in the context of the
problems discussed here), which we believe is an inter-
esting topic and it deserves to be studied on its own.
We hope that connections presented here to MPC and
LCA settings add to the motivation.
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